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Overview
!e Africa Soil Information Service (AfSIS), a col-
laborative project led by the Tropical Soil Biology 
and Fertility Institute (TSBF) of the International 
Center for Tropical Agriculture (CIAT), based in 
Nairobi, will attempt to narrow sub-Saharan Af-
rica’s soil information gap and provide a consistent 
baseline for monitoring soil ecosystem services.  
 
!e AfSIS project area includes ~17.5 million km2 
of continental sub-Saharan Africa (SSA) and al-
most 0.6 million km2 of Madagascar. !is area that 
encompasses >90% of Africa’s human population 
living in 42 countries. !e project area excludes hot 
and cold desert regions based on the recently revised 
Köppen-Geiger climate classi"cation, as well as the 
non-desert areas of Northern Africa, small island 
nations, protectorates and national territories. 
!e AfSIS ground survey teams are in the process 
of  surveying and sampling this vast area using 
a spatially strati"ed, random sampling approach 
consisting of 60, 100 km2 sentinel landscapes, which 
are statistically representative of the variability in 
climate, topography and vegetation of the project 
area. 
Twenty-one of the 60 sentinel landscapes fall within 
biodiversity hotspots as designated by Conserva-
tion International. !e main advantage of this new 
data collection e#ort lies in its hierarchical sampling 
approach that replicates soil and other biophysical 
(e.g., land cover) measurements at di#erent spatial 
scales, linking consistent, georeferenced ground ob-
servations to laboratory measurements, agronomic 
"eld trials and remote sensing data.  
 
Ground surveys of the AfSIS sentinel landscapes 
will provide ~9,600 new soil pro"le observations 
consisting of more than 38,000 individual soil 
samples. Georeferencing and sentinel landscape 

documentation with digital photography will fur-
ther ensure that sampling locations can be revisited 
at later points in time to quantify where speci"c 
changes occurred and which environmental and 
human-made factors caused these. 
It would be cost and time prohibitive to analyze 
these new soil samples for e.g., carbon and nutrient 
content, texture, mineralogy, water holding capac-
ity and an entire suite of other potentially impor-
tant soil properties, using conventional laboratory 
techniques. Instead, a key innovation of AfSIS is to 
use both near and mid-infrared spectroscopy for soil 
analyses.  
 
!e new data collections will also be supported with 
data from what is currently the most comprehen-
sive international soil pro"le database for Africa 
(see ISRIC WISE v. 3.1 at www.isric.org), which 
contains data on 4,173 African soil pro"les. AfSIS 
will add to this resource by digitizing additional soil 
pro"le “legacy data” where these can be retrieved 
from African soil survey and research organizations, 
georeferenced and subjected to ISRIC’s stringent 
data quality control criteria.  
 
Substantial e#ort will be devoted to assembling 
and harmonizing satellite image time series and 
digital terrain models for SSA. !ese base maps will 
be used as spatial covariates for digital soil map-
ping, but can also be used for other mapping and 
modeling purposes. For example, AfSIS will use 
MODIS, Landsat, ASTER and Quickbird images 
and SRTM terrain models for soil mapping, land 
cover change detection and estimation of landscape 
carbon stocks. By linking legacy, "eld and laboratory 
data to remote sensing information, digital terrain 
models, and other existing environmental covariates, 
AfSIS will thus be able to provide a unique resource 
for producing a new generation of soil, vegetation 
and land-cover maps as well as wide range of statis-
tical products for SSA. 
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1 Concepts of Soil Health 
Surveillance

Almost 70 years ago Hans Jenny outlined the 
dynamical systems framework of the state factors of 
soil formation for evaluating the condition of soils 
and in regulating the $uxes of energy, materials and 
organisms to and from them. !e factors include 
climate, organisms, topography, parent material and 
time as well as more locally contingent variables 
such as "res, various forms of pollution, tillage, 
fertilizer applications, and livestock grazing, among 
others. As predicted by Jenny, human activities have 
dramatically altered the state of climate, organisms 
and the contingent factors on a global scale, and the 
rates of human-driven change processes are expect-
ed to accelerate over the next 100 years, particularly 
in Africa. 
People depend on soils for a wide range of essen-
tial ecosystem services. For example, soils are a key 
resource in the production of food, forage, fuel and 
"ber. Soils store and cycle water from rainfall and 
irrigation and "lter toxic substances through clay 
sorption and precipitation processes that determine 
surface and ground water quality. Soil organisms 
decompose organic materials, cycle nutrients and 
regulate gas $uxes to and from the atmosphere. As 
human populations have grown, there has been a 
strong tendency to trade o# increases in the demand 
for provisioning services (e.g., for food and other 
commodities) for regulating (e.g., nutrient, green-
house gas and hydrological cycling) and supporting 
services (e.g., biodiversity).
In many parts of sub-Saharan Africa (SSA), positive 
feedback dynamics between growing populations, 

land cover and climate change have led to a rapid 
loss in the capacity of soils to deliver essential eco-
system services. In some instances this has initiated 
catastrophic ecological regime shifts, with promi-
nent examples including the Lake Victoria Basin of 
East Africa, the Sahelian drylands and the humid 
forests of Madagascar. 
!ese highly undesirable changes are not easily 
reversible and are major, though largely hidden, 
costs of development, which challenge the prospects 
of a better future for Africans, potentially leading 
to increased con$icts over land. Moreover, SSA’s 
population is likely to double over the next 25-30 
years, rising to an expected 1.75 billion people by 
2050. !is new population will not only demand 
more services from soils and ecosystems as a whole, 
but its per capita demand for such services must also 
increase if human development and poverty indices 
are to improve. 
It is therefore striking that as humankind is suc-
cessfully exploring, mapping, and monitoring other 
planets of our solar system, we know very little 
about the condition and trend of soils in Africa. In 
many African countries, soil data and maps have 
also vastly exceeded their expiration date, as state 
factors have changed dramatically since the 1960s 
and ’70’s, when many major soil surveys were con-
ducted. 
!e state of the soil system is constantly changing, 
driven by small changes in individual soil proper-
ties. Important soil properties, often referred to as 
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indicators, include soil organic carbon, nitrogen, 
acidity, color and so forth, while important drivers 
of these changes include soil climate, soil organisms 
and topography.
Soil health is often de"ned in the context of agricul-
tural management or intervention. Kibblewhite et 
al. (2008), described soil health as an “integrative 
property that re$ects the capacity of soil to respond 
to agricultural intervention, so that it continues to 
support both the agricultural production and the 
provision of other ecosystem services”.
Fundamentally, soil health is often used to describe 
the general condition of the soil resource base. It 
integrates simultaneous function, is hence di%cult 
to de"ne precisely, and should not be confused with 
soil quality as used in the soil science community in 
recent decades. Quantifying soil health is not trivial 
given its integrative nature, and will not be possible 
using conventional indicators of soil fertility alone. 
Some attempts have been made at developing in-
dices for soil condition by using relatively novel ap-
proaches to the analysis of multivariate data and soil 
spectroscopic techniques (e.g. Vagen et al., 2006). 
In most situations establishing this relationship will 
require multivariate pattern recognition and calibra-
tion techniques.
Soil health surveillance in AfSIS is built around 
the use of new approaches to soil analysis which 
include soil infrared spectroscopic techniques, X-ray 
$uorescence, X-ray di#raction, and laser di#raction 
particle size analysis, as well as a range of statistical 
methods from multilevel modeling techniques to 
pattern recognition and machine learning. 
Combing these analytical techniques allows for an 
integrative analysis of soil properties and the devel-
opment of a holistic analysis of soil condition. For 
example, variables a#ecting soil nutrient capacity 
such as clay mineralogy, total elemental concentra-
tions, absorbance spectra, texture and parent mate-

rial can be combined to provide a more accurate 
assessment of soils’ nutrient capacity. 
AfSIS employs this concept of soil health beyond 
agricultural landscapes and into semi-natural eco-
systems, as native forests also require healthy soil for 
their productivity. !is is also extremely important 
given current and historic land-change dynamics 
across the African continent. !e idea is to provide 
an assessment of the soils’ ability to provide essential 
ecosystem services, including, but not limited to 
agricultural productivity.
As mentioned above, there are many natural and 
human-induced drivers a#ecting soil condition. In 
order to understand the complex processes a#ect-
ing soil productivity, soil degradation and overall 
soil condition, variables representing these drivers 
should also be monitored. 
AfSIS employs a sampling methodology that at-
tempts to understand and quantify factors a#ecting 
soil condition. !is includes combining soil sample 
collection and analysis, with simultaneous measure-
ments of vegetation type and structure, current and 
historic land use, visible erosion, and an analysis of 
satellite imagery, which allows for the incorporation 
of hydrologic patterns across the landscape, occur-
rence of "res and historic land-use change into the 
models. Combining these analyses allows for a more 
robust assessment of processes a#ecting soil condi-
tion, speci"cally identifying drivers of change and 
will ultimately aid in designing targeted restoration 
and preventive e#orts.
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2 Field Measurements

!e "eld methods employed in the soil health 
component of the AfSIS project were developed 
at the World Agroforestry Centre, and are referred 
to as the Land Degradation Surveillance Frame-
work (LDSF). !e LDSF is designed to provide 
a biophysical baseline at landscape level, and a 
monitoring and evaluation framework for assessing 
processes of land degradation and the e#ectiveness 
of rehabilitation measures (recovery) over time. 
!e sampling framework is built around a hierarchi-
cal "eld survey and sampling protocol using sentinel 
sites that are 10 x 10 km in size (Figure 1). Each 

sentinel site is strati"ed into 16 grid cells, and sam-
pling cluster centroids are randomly located within 
the grid cells. Around each centroid, 10 sampling 
plots are randomly located covering an area of 1 
km2 (100 ha). Each sampling plot is 1000 m2  (0.1 
ha). Each sampling plot has 4 subplots (Figure 3), 
each of 100m2.  Observations and measurements are 
made either at the plot or subplot level.
!e framework provides "eld protocols for mea-
suring indicators of the “health” of an ecosystem, 
including vegetation cover, structure and $oristic 
composition, historic land use, visible signs of soil 

Figure 1. AfSIS sentinel site (blue dots are sampling plots) near Megwin, Ethiopia. !e site is 10x10 km in size.
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degradation, and soil physical characteristics. A 
sampling framework for collection of soil samples is 
also provided, as described in more detail later.  
In AfSIS, sentinel sites represent a strati"ed random 
sample of landscapes in Africa south of the Sahara. 
!e strati"cation is based on Koeppen-Geiger 

Figure 2. Köppen-Geiger climate zones in Africa, clipped to the AfSIS project area. Yellow circles (dots) show the location of the 60 AfSIS 
sentinel sites. Background is a topographical shading image based on the SRTM DEM.

climate zones ( Figure 2 - http://koeppen-geiger.
vu-wien.ac.at).
Sentinel sites may also be selected at random across 
a region or watershed, or they may represent areas of 
planned activities (interventions) or special interest.
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Figure 3. AfSIS plot (1000 m2) layout (radial arm), showing the 
four sub-plots (C,1,2,3 - each 100 m2).

Figure 4. Sketch illustrating the T-square method for measurement 
of woody cover in AfSIS plots.

Figure 5. Lavaka erosion in the highlands of Madagascar. Photo 
was taken from the SW corner of the inset satellite image, looking 
NE.
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2.1 Vegetation measurements
Woody- and herbaceous cover ratings are made us-
ing a Braun-Blanquet (Braun-Blanquet,  1928) veg-
etation rating scale from 0 (bare) to 5 (>65% cover). 
Woody plants (shrubs (<3 m height) and trees (>3 
m height)) are counted at each subplot to obtain 
density estimates for trees and shrubs. Distance-
based measurements are also carried out at each 
subplot using the T-square method (Krebs, 1989) 
(Figure 4) to determine vegetation distribution.  
!e “T-square” method is one of the most ro-
bust distance methods for sampling woody plant 
communities, particularly in forests, but also in 
rangelands. It can be used to estimate stand param-
eters such as distribution (random, non-random, 
clumped, non-clumped), density, basal area, biovol-
ume, and depending on the availability of suitable 
allometric equations, also biomass. !e LDSF 
"eld protocols have also been supplemented with 
destructive harvesting of trees.
!e advantage of this method, over other commonly 
used distance methods such as the point-centered 
quarter (PCQ) method, is that it is less prone to bias 
where plants are not randomly distributed. 

2.2 Soil !eld characterisation

Soil sampling
Top- and subsoil samples are collected from each 
subplot at 0-20 cm and 20-50 cm depth increments, 
respectively, and pooled (composited) into one 
sample for each plot and depth, resulting in a total 
of 320 standard soil samples per sentinel site. !ese 
samples are analyzed using NIR and MIR spectros-
copy and a subset is subjected to reference analysis. 
(see page 20).

Field texture
Top- and subsoil "eld texture is determined by hand 
using a ribbon test (Figure 7), and the ribbon length 
and feel are recorded in the "eld data entry form. 
Field texture is determined automatically in the 
database. Auger depth (root depth) restrictions are 
noted (in cm) if present during soil sampling. 

Root Depth Restrictions
Auger depth (root depth) restrictions are recorded 
(in cm) if present during soil sampling.

Figure 6. Measurement of soil in"ltration capacity
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Soil Texture By Feel Flow Chart

Place approximately two teaspoons of
soil in your palm.  Add a few drops of
water and kneed soil to break down
all the aggregates  Soil is at proper
consistency when it feels plastic and
moldable, like moist putty.

Add dry soil to
soak up water

Start

Does the soil
remain in a ball

when squeezed?

Is the soil too
dry?

Is the soil too
wet?

No

Yes

No SandNo

Place ball of soil between thumb and forefinger, gently pushing the soil
with your thumb, squeezing it upward into a ribbon.  Form a ribbon of
uniform thickness and width.  Allow the ribbon to emerge and extend
over forefinger, breaking from its own weight.  Does the soil form a
ribbon?

Yes

Yes

Loamy
Sand

No

Does soil make a
weak ribbon < 1"

long before it
breaks?

Does soil make a
medium ribbon

1-2" long before it
breaks?

Does soil make a
strong ribbon > 2"

long before it
breaks?

No

Yes

No

Does soil
feel very
gritty?

Neither
gritty nor
smooth?

Does soil
feel very
smooth?

Sandy
Loam

Loam

Silt
Loam

Yes

Yes

Yes

No

No

Does soil
feel very
gritty?

Neither
gritty nor
smooth?

Does soil
feel very
smooth?

Sandy
Clay

Loam

Clay
Loam

Silty
Clay
Loam

Yes

Yes

Yes

No

No

Does soil
feel very
gritty?

Neither
gritty nor
smooth?

Does soil
feel very
smooth?

Sandy
Clay

Clay

Silty
Clay

Yes

Yes

Yes

No

No

Excessively wet a small pinch of soil in your palm and rub it with your forefinger.

% CLAY

%
S
A
N
D

HI

LO HI

Figure 7. Soil texture by feel #ow-chart.
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2.3 Land cover classi!cation
Land cover of all plots is recorded using a simpli-
"ed version of the FAO Land Cover Classi"cation 
System (LCCS), which has been developed in the 
context of the FAO-AFRICOVER project (http://
www.africover.org).
!e “binary phase” of LCCS recognizes 8 primary 
land cover types, only 5 of which are sampled, 
including:
1. cultivated and managed terrestrial areas,
2. natural and semi-natural vegetation, 
3. cultivated aquatic or regularly $ooded areas,
4. natural or semi-natural aquatic or regularly 

$ooded vegetation, and
5. bare areas.
Arti"cial surfaces and associated areas, natural 
and arti"cial water bodies, and surfaces covered by 
snow or ice are not formally surveyed in AfSIS, but 
their presence within a cluster should be noted and 
georeferenced.
!e “modular-hierarchical phase” of LCCS further 
di#erentiates primary land cover systems on the 
basis of dominant vegetation life form (tree, shrub, 
herbaceous), cover, leaf phenology and morphology, 
and spatial and $oristic aspect. All the associated 
features are assessed visually and are generally coded 
on either categorical or ordinal rating scales. !e 
ratings can subsequently be converted to unique 
hierarchical identi"ers representing di#erent land 
cover types.

Cumulative soil mass
Cumulative mass soil samples are collected to 100 
cm (0-20, 20-50, 50-80, 80-100 cm) at all in"ltra-
tion plots and plot one (1) of each cluster. Plot one 
is included because it is the reference plot and all 
soil samples from this plot are subjected to standard 
chemical and physical reference analyses to calibrate 
prediction models from IR spectra. No additional 
cumulative mass samples are taken.

Soil erosion by water
Water erosion results from the removal of soil 
material by $owing water. A part of the process is 
the detachment of soil material by the impact of 
raindrops. !e soil material is suspended in runo# 
water and carried away. Four kinds of accelerated 
water erosion are commonly recognized: sheet, rill, 
gully, and tunnel (piping).
In each sub-plot (C, 1, 2, 3 - Figure 3), signs of 
visible erosion are recorded, including the dominant 
type of erosion, together with rock/stone/gravel 
cover on the soil surface. 

Soil in!ltration capacity
!is is the most time-consuming aspect of the "eld 
methodology. It is generally desirable to obtain a 
minimum of 3 in"ltration tests in each cluster, allo-
cated randomly to the di#erent plots in the cluster.
In AfSIS we use a single ring in"ltration ring. !e 
ring is placed at the center of the plot. !e soil is 
pre-wet the soil with 2-3 liters of water, which left 
to soak in for at least 15-20 minutes. 
!e test is conducted by maintaining a constant 
head, and reading the level every 5 minutes for the 
"rst half hour of the test. After 30 minutes, readings 
are made every 10 or 15 minutes, for up to 2 hours. 
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eated, excavated using a spade and kept in a tray in 
order to hand-sort earthworms. Specimens collected 
are preserved in 70% alcohol.

Earthworm identi"cation
Earthworm samples taken to the laboratory are 
separated into morphotypes, genera or species using 
a binocular microscope whenever possible before be-
ing sent to the Hungarian Natural History Museum 
for con"rmation or identi"cation. Samples are kept 
in 4% formaldehyde after counting and weighing.

Data processing and analysis
Data collected is (i) converted to density (individu-
als m-2) and biomass (g m-2) to assess the variation 
of earthworm populations across land-use types, 
and (ii) species richness is estimated per site by 
extrapolation methods such as "rst-order Jacknife, 
second-order Jacknife, Chao,  and ACE which are 
implemented in the free software EstimateS (Col-
well, 2005; Colwell and Coddington, 1994) and, (iii) 
assessment of indicator species or species assem-
blages characterizing groups of ecosystems using the 
IndVal program (Drufrene and Legendre, 1997).

2.4 Soil biodiversity sampling
In a selection of AfSIS sentinel sites, soil biodiver-
sity sampling is being conducted, focusing on soil 
macrofauna, which is the visible part of the below-
ground biodiversity among which termites, ants, and 
earthworms are referred to as ecosystem engineers 
due to their marked impact on soil function.
!e soil system hosts a diverse community of soil 
organisms involved in several ecological functions 
and ecosystem services such as nutrient cycling, 
control of pest and diseases, organic matter decom-
position and carbon sequestration, and maintenance 
of a soil structure (Lavelle et al., 2006). 
Earthworms comprise 40-90% of the soil macro-
faunal biomass in most ecosystems (Fragoso et al., 
1999) and are sensitive to ecosystem disturbance 
(Fragoso et al., 1999; Decaens et al., 2002, Tondoh 
et al., 2007) and rehabilitation (Hole et al., 2005, 
Ortiz-Ceballos and Fragoso, 2004; Schmidt et al., 
2003; Sepp et al., 2005). Consequently, they can be 
used as a potential indicator of changes in terres-
trial ecosystems in the context of land degradation 
assessment. Earthworms have been selected as 
they are (i) responsive to a range of environmental 
stresses, and (ii) easily measured and quanti"ed.

Earthworm sampling
Sampling should occur during the short or long 
rains, when individuals are most active and can be 
easily sampled (Tondoh and Lavelle, 2005). 
In AfSIS sites where soil macrofauna is sampled, 
this is conducted in the plots where in"ltration 
measurements are undertaken, as well as in two 
additional plots per cluster (5 plots per cluster). In 
total 80 sampling points are sampled per site. 
Earthworms are collected using a 25 x 25 x 10 cm 
iron frame (Figure 8). A soil monolith is then delin-

Figure 8. Iron frame (right) and sampling jars for collecting earth-
worms (Kubease Sentinel Site, Ghana)



 SOIL HEALTH SURVEILLANCE | 11

2.5 References
Colwell, R.K., 2000. ‘Statistical Estimation of Spe-
cies Richness and Shared from Samples.  Software 
and User’s Guide, Version 6.0b1’, http://viceroy.eeb.
ucon.edu/estimates
Colwell, R.K., Coddington, J.A., 1994. Estimating 
terrestrial biodiversity through extrapolation. Philo-
sophical Trnasactions of the Royal Society (Series 
B), 345-101-118.
Schimdt, O., Clements, O.R., Donalson, G., 2003. 
Why do cereal-legume intercrops support large 
earthworm populations? Applied Soil ecology 22, 
181-190.
Decaens, T., Jimenez, J.J., 2002. Earthworm com-
munities under an agricultural intensi"cation gradi-
ant in Colombia. Plant and Soil 240, 133-143.
Fragroso, C., Lavelle, P, Blanchart, E., Senapati, 
K.B., Jimenez, J.J., Martinez, D.L.A.M., Decaens, 
T., Tondoh, J., 1999. Earthworm communityies of 
tropical agroecosystems: origin, structure and in$u-
ence of management practices. In: Lavelle, P., Brus-
sard, L., Hendrix, P. (eds) Earthworm management 
in tropical agroecosystems. CABI. Wallinggford, pp 
27-55.
Hole, G.D., Perkins, J.A., Wilson, D.J., Alexander, 
H.I, Grice, V.P., Evans, D.A., 2005. Does organic 
farming bene"t biodiversity? Biological Conserva-
tion 122, 113-130.
Lavelle, P., Decaëns, T., Aubert, M., Barot, S., 
Blouin, M., Bureau, F., Margerie, P., Mora, P., Rossi, 
J-P., 2006. Soil invertebrates and ecosystem services. 
European Journal of Soil Biolology 42, S3-S15.



12 | 

3 Laboratory Measurements

3.1 Approach to soil 
characterization
!e AfSIS soil analytical procedures emphasize the 
measurement of soil functional properties that de-
termine soil health – the capacity of soil the capacity 
of land to sustain delivery of essential functions or 
ecosystem services, such as hydrological regulation, 
nutrient supply to plants, and nutrient retention 
(Swift & Shepherd, 2007; Robinson et al., 2009). 
!e outputs of AfSIS could contribute substantially 
to the new concepts of natural capital and ecosys-
tem services.  !ree classes of properties can be 
de"ned according to the degree to which they show 
dynamic properties and to which they are in$uenced 
by management:
1. Slow, management insensitive. Intrinsic proper-

ties of soils that change only slowly with time, 
primarily in relation to soil forming factors. 
!ey are key determinant of intrinsic soil 
functional properties and therefore important 
to measure to describe spatial variation in soil 
functional capacity. Examples are mineralogy 
and particle size distribution. Of course in 
extreme cases, all properties can be a#ected by 
management, e.g. severe human-induced soil 
erosion.

2. Slow, management sensitive. Key indicators or 
determinants of soil functions that are respon-
sive to management over periods of several 
years. Soil organic matter content is a good 

example. !ese are the most useful variables for 
long-term monitoring of soil functional capac-
ity as a reliable estimate can be obtained from a 
single measurement point in time.

3. Fast, management sensitive. !ese properties 
may be important for some soil functions but 
$uctuate rapidly (e.g. within a year) in response 
to climatic, hydrological and management 
conditions. !ese variables require frequent 
monitoring to develop an understanding of 
their behaviour and to obtain reliable estimates 
of average values. It is generally di%cult and ex-
pensive to conduct such measurements in large 
area surveys. Examples are mineral nitrogen, 
microbial activity, topsoil macro-aggregation. 
Few fast variables are management insensitive.

At AfSIS sentinel sites, priority is given to measure-
ment Category 2 variables above, i.e. ‘slow’ variables 
that change only slowly with time in response to 
management and edaphic factors (e.g. soil organic 
matter levels).
Soil testing under AfSIS is designed to meet diverse 
needs of di#erent users (e.g. McLaughlin et al., 
1999): diagnosis of soil constraints for agriculture, 
monitoring of trends in soil health, land capabil-
ity for agriculture, soil testing for engineering and 
stabilization purposes, ecological and human health 
risk assessment; and prognostic testing to inform 
investment decisions (e.g. fertilizer rates, soil condi-
tioners, soil drainage, soil conservation).
In order to deal with the large number of soil 
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samples needed to adopt a soil health surveillance 
approach, soil infrared di#use re$ectance spectros-
copy is used as the primary soil characterization tool 
(Shepherd and Walsh, 2007). A double (two-phase) 
sampling approach is used, whereby all samples 
are spectrally characterized, and random subsets 
are selected for reference measurements. Reference 
measurements are standard laboratory measure-
ment methods used for soil characterization. !ese 
are usually too time consuming and expensive to 
perform on large numbers (thousands) of samples.
Near infrared (NIR) spectral measurements are 
conducted through regional laboratories in eastern, 
southern and West Africa (Figure 9). !e NIR spec-
tral laboratory network uses standard instrumenta-
tion and standard operating procedures to ensure 
reproducibility of results among laboratories and 
over time. More specialized infrared spectral mea-
surements and reference analyses are all conducted 
through the World Agroforestry Centre (ICRAF) 
Soil-Plant Spectral Diagnostics Laboratory facility 
in Nairobi to ensure consistency of methods. !e 
ICRAF laboratory provides technical backstopping 
and quality control for the network of near infrared 
spectral laboratories.

Figure 9. AfSIS soil infrared spectral laboratory network. 
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on a subsample of about 10% of all standard soil 
samples (32 samples per sentinel site). 
Reference analyses that are more time consuming 
and expensive (e.g. stable isotope analysis) are con-
ducted on smaller subsets of samples than cheaper 
faster reference measurements. Currently proposed 
modules are described below, but additional mod-

AfSIS uses a prioritized modular approach to soil 
reference measurements (Figure 10). !e refer-
ence modules (e.g. standard soil fertility module) 
implemented and the size of subsample (i.e. number 
of samples) for reference measurements are con-
strained by available budget. At current funding 
levels, reference analysis modules are implemented 

Figure 10. AfSIS soil reference analysis modules.
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the database. Detailed procedures are given in the 
AfSIS Standard Operating Procedure for Sample 
Processing at Regional Laboratories.

Soil sample processing
Soil samples are air-dried and crushed to pass a 
2-mm sieve. !e total sample weight and the weight 
of the soil "nes (<2 mm) are recorded, so that the 
percentage weight of the coarse fraction (>2 mm) 
is also known. !e proportion of soil "nes is a soil 
quality attribute in its own right. !e total sample 
weight and weight of soil "nes are also used to cal-
culate cumulative soil mass for the augered pro"les 
for carbon and nutrient content determination.
Soil "nes are subsampled using coning and quarter-
ing (see below) or a sample divider (ri&e box) to 
give about 350 g of soil, which is stored in a strong 
paper bag. Subsampling is repeated to obtain a rep-
resentative 20 g subsample for shipping to ICRAF 
Nairobi for analysis by mid-infrared di#use re$ec-

ules may be added according to special interests of 
other projects.
Legacy soil samples are also included where these 
can be obtained. !ese are restricted to samples that 
are georeferenced, have soil pro"le descriptions, and 
have been stored in good condition (e.g. Sheppard 
and Addison, 2008) with clear labeling. 
Standard operating procedures for all sample prepa-
ration and analytical methods, giving speci"cs of 
instrumentation and procedure details, are available 
separately as a series of standard operating proce-
dures.

Soil sample reception and logging
All samples from the "eld are transported to re-
gional laboratories for processing. Samples collected 
within the AfSIS project have field descriptors 
in electronic format already entered in the AfSIS 
database. Every sample received is assigned a unique 
sample serial number (SSN) and is logged into 

Figure 11. Schema for AfSIS soil processing.
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visible  (0.4 – 0.7 µm) range these di#erences are 
discernible as changes in soil colour (Bigham and 
Ciolkosz, 1993). Beyond the di#erences in colour, 
fundamental absorptions in reflectance spectra oc-
cur at energy levels that allow molecules to rise to 
higher vibrational states. 
For example, the fundamental features related to 
various components of soil organic matter (e.g. 
symmetric C–H stretching) generally occur in the 
mid infrared range (2.5 to 25 µm; or 4000 to 400 
cm-1). Mid infrared spectra can be divided into four 
regions (Figure 13). Soil organic matter produces 
broad absorption features near 3400, 1600 and 
1400 cm-1, and gives rise to features throughout the 
spectra associated with aromatic structures, alkyls, 
carbohydrates, carboxylic acid, cellulose, lignin, 
C=C skeletal structures, ketones, and phenolics (e.g. 
Madari et al., 2006; Janik et al., 2007). 
Clay minerals produce strong absorbance in the 
3600 to 3800 cm-1 region, due to hydroxyl stretch-
ing vibrations. Carbonates produce absorption with 

tance spectroscopy (MIR) and other specialized 
analyses. Coarse fractions (20 g) are also subsampled 
and shipped to Nairobi for total element analysis. 
!e overall schema for soil sample processing is 
shown in Figure 11 In addition to the 20 g sub-
samples, selected samples of 350 g of soil "nes are 
shipped to ICRAF-Nairobi for reference analyses. 
Sample selection is based on spatial strati"cation 
within sentinel sites (32 samples per sientinel site) 
and spectral diversity within sentinel site. Detailed 
procedures, including shipping procedures are given 
in the AfSIS Standard Operating Procedure for 
Sample Processing at Regional Laboratories.

3.2 Infrared spectroscopy (IR)
Di#use re$ectance infrared spectroscopy (IR) is an 
established technology for rapid, non-destructive 
characterization of the composition of materials 
based on the interaction of electromagnetic energy 
with matter. 
IR is now routinely used for analyses of a wide 
range of materials in laboratory and process control 
applications in agriculture, food and feed tech-
nology, geology and biomedicine (Shepherd and 
Walsh, 2007). Both the visible near infrared (VNIR, 
0.35-2.5 µm) and mid infrared (MIR, 2.5-25 µm) 
wavelength regions have been investigated for non-
destructive analyses of soils and can potentially be 
usefully applied to predict a number of important 
soil properties determine the capacity of soils to 
perform various production, environmental and 
engineering functions (Shepherd and Walsh, 2004).
!e reason that IR is useful for soil characteriza-
tion is that when light interacts with a soil sample, 
it is absorbed to di#erent degrees in each waveband 
due to electronic transitions of atoms and vibra-
tional stretching and bending  of structural groups 
of atoms that form molecules and crystals. In the 

Figure 12. Fourier-transform near infrared spectrometer  
(Multipurpose Analyszr).
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and combination mode absorptions occur near 1.4 
µm and 1.9 µm and can be used to derive estimates 
of soil water content as well as assessments of its 
degree of association with solid soil phase (e.g. Ben-
Dor, 2008).  Secondary (i.e. clay) minerals often 
have highly diagnostic spectral signatures in the 
VNIR region because of strong absorption of the 
overtones of SO4

2−, CO3
2- as well as OH- and com-

binations of fundamental features of, for example, 
H2O and CO3

2-. Absorptions due to charge transfer 
and crystal field e#ects in Fe2+ and Fe3+ are particu-
larly evident at 0.35 to 1.0 µm (Figure 14). 

little interference from other minerals at 2600 to 
2500 cm-1 (Nguyen et al., 1991). Silica O-Si-O 
stretching and bending fundamentals occur in the 
"ngerprint region (Figure 13) and their overtone/
combination bands at 2000-1650 cm-1 are useful for 
quantitative evaluation of quartz, as the overtones 
are less in$uenced by particle size than the funda-
mental features (Nguyen et al., 1991).
Overtones (at one half, one third, one fourth, etc) 
of the frequencies of fundamental absorptions oc-
cur in the near infrared range above 4,000 cm-1 
(0.7–2.5 µm) (Figure 14). Distinctive OH- overtone 

Figure 13. Soil infrared spectra: (1) "ngerprint (e.g. O-Si-O stretching and bending (2) double-bond (e.g. C=O, C=C, C=N), (3) triple bond 
(e.g. C�C, C�N), and (4) X-H stretching (e.g. O-H stretching). !e three main absorption features in the NIR range are principally associated 
with clay lattice and water OH, whereas organic matter a$ects the overall position and shape of the spectrum.
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stages of decomposition and age. Di#erent soil 
particle size classes are also often associated with 
materials of di#erent mineralogical origins and 
can have distinctively di#erent spectral signatures. 
Clearly there is the potential for many other such 
physicochemical interactions in  soils. 
As a result, VNIR spectra of soils have few dis-
tinct absorption features, rendering de"nitive band 
assignments and feature-based interpretations, 
common in analytical chemistry and geological 
applications, of rather limited value. Soil spectra are 
therefore often di%cult to interpret without resort-
ing to multivariate pattern recognition techniques. 
While this is fairly standard spectroscopic practice, 
a limitation of soil infrared spectroscopy is that it 
is largely empirical and can therefore be vulnerable 
to performance failures when predictions are made 
for samples outside the population of soils used for 
calibration (e.g. Brown et al., 2006).

In addition to the various chemical absorptions, 
physical properties of soils such as aggregate and 
particle-size distributions also a#ect the shape of 
the spectra. For pure substances the associated scat-
tering/absorption processes are described concisely 
by Beer’s law and the Fresnel equation.
Particle size di#erences are generally expected to 
change the baseline height of a reflectance curve 
without substantially altering the position of specific  
diagnostic features, and theoretically substances 
with larger grain (or aggregate) sizes have greater  
internal scattering path lengths from which photons 
may be absorbed. !is would generally lower their 
overall reflectance baselines in the VNIR spectral 
region. However, in soils purely physically induced 
scattering processes often interact with di#erences 
in chemical composition. 
For example, certain soil aggregate size classes may 
be associated with di#erent quantities of organic 
matter, which  may in turn be related to di#erent 

Figure 14. Di$use visible near infrared re#ectance spectra from the World Agroforestry Centre’s Africa soils library. (A). Spectral selected clos-
est to central composite design points from the principal component space plus the spectrum with the highest and lowest albedo. (B). !e visible 
part of the same spectra shown continuum removed to emphasize the absorption features. Source: Shepherd and Walsh (2002).
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Bruker Optik GmbH, Germany) (Figure 12). 
!is type of instrument was chosen for the spectral 
laboratory network because of their high level of re-
producibility among instruments, good stability over 
time and temperature $uctuations, internal valida-
tion procedures, and versatility in being able to ana-
lyze a wide range of agricultural inputs and products 
(described in Shepherd and Walsh, 2007). Some 
laboratories are in addition equipped with "eld por-
table visible near infrared spectrometers (Analytical 
Spectral Devices), which are di#usive spectrometers 
(e.g. Shepherd and Walsh, 2002), which also provide 
versatility, but rely on external reference materials 
and lack internal validation routines. Samples are 
analyzed on both types of spectrometers where pos-
sible to provide inter-instrument calibration transfer 
algorithms. Details of all spectral measurements are 
available as standard operating procedures.

Mid infrared spectroscopy
In addition to NIR analysis, mid infrared di#use 
re$ectance spectroscopy (MIR) is a key soil char-
acterization and screening tool in AfSIS. MIR has 

Near infrared spectroscopy in regional 
laboratories
Near infrared di#use re$ectance (NIR) analysis is 
the primary soil characterization and screening tool 
in AfSIS. All samples are characterized using NIR. 
!e near infrared spectral laboratories are equipped 
with Bruker Fourier-Transform MultiPurpose 
Analyzer spectrometers (MPA) (manufactured by 

Figure 15. Left: Mid-infrared Fourier Transform Spectrometer "tted with a high-throughput screening accessory and robot for automatic 
loading of microplates. Right: Loaded microplate with empty wells for reference readings.

Figure 16. Manually operated mid-infrared Fourier transform 
spectrometer.
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using a new manually-operated FT-MIR spectrom-
eter (Bruker Alpha) "tted with a di#use re$ectance 
accessory (Figure 16).  !is is a low cost instrument 
with only an A-4 sized footprint and can be run o# 
a battery pack. Instrument and measurement details 
are available in instrument-speci"c standard operat-
ing procedures.

3.3 Reference measurements

Organic matter
Soil organic carbon is a key indicator of soil health, 
providing important biological, physical and chemi-
cal functions, not least ecosystem resilience (Bal-
dock and Nelson, 2000). Organic matter of a soil is 
an integral part of a soil’s stock of nutrient, and its 
turnover both supplies nutrients and may be limited 
by particular de"ciencies. However critical and satu-
ration values are not yet well de"ned and depend on 
soil particle size distribution and clay mineralogy 
(Sanchez et al., 2003). AfSIS will develop local and 
global reference values for organic carbon levels for 
Sub-Saharan Africa.
Total and organic C and total N are analyzed at 
ICRAF by thermal oxidation (Skjemstad and 
Baldock, 2008) using a carbon analyzer according to 
Standard ISO 10694: Soil quality - Determination 
of organic and total carbon after dry combustion 
(elementary analysis). !e instrument is a !er-
moquest FlashEA 1112 including an autoanalyser. 
Total C and N is determined on unacidi"ed samples 
and organic C on acidi"ed samples, i.e. fumigated 
with hydrochloric acid to remove inorganic carbon 
(carbonate) (modi"ed form Harris et al., 2001). 
Inorganic C is estimated as the di#erence between 
unacidi"ed and acidi"ed C. Soil carbon contents are 
determined using cumulative soil mass data ob-
tained from weights of soil auger samples.

theoretical advantages over near infrared spectros-
copy for soil analysis in that light absorption due to 
fundamental features, as opposed to their overtones, 
is measured and MIR is sensitive to quartz, a key 
constituent of soils ( Janik et al., 1988; Shepherd 
and Walsh, 2004). MIR also has advantages for 
characterization of organic matter pools ( Janik et al. 
2007). 
However, MIR is more technically demanding than 
NIR and at this stage MIR measurements are cen-
tralized at ICRAF’s Soil-Plant Spectral Diagnostics 
Laboratory. !e laboratory has developed a high 
throughput system that does not require gas purging 
(Figure 15). !e instrument used is a Bruker Tensor 
27 Fourier-Transform spectrometer attached to a 
High-!roughput Screening (HTS-XT) accessory. 
!e instrument has in-built validation procedures to 
guard against instrument drift. 
Samples are "ne ground and loaded into micro-
titer plates. Only a few milligrams of sample are 
required. A robotic arm is used for automated high 
throughput analysis. All AfSIS soil samples are to 
be characterized using high throughput MIR.
In addition all reference samples are characterized 
Table 1. AfSIS chemical soil fertility reference analysis

Analysis Method
Organic C and N Combustion, acidi"ed and 

non-acidi"ed
pH, electrical  
conductivity (EC)

Electrodes using 1:2 
volume water extract

Exchangeable acidity KCl extraction, unbu#ered
Extractable Al, Ca, Mg, P, K, Na, 
S, Fe, Mn, Zn, Cu, B, Mo, H, 
other bases

ICP analysis of Mehlich 3 
extracts

P sorption capacity P Sorption Index mea-
sured by single-point P 
addition.
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Basic chemical soil fertility
!e AfSIS approach to soil fertility evaluation ac-
commodates two paradigms of soil fertility manage-
ment. !e "rst paradigm is built around the concept 
of critical limits or su%ciency levels of individual 
constraints or nutrients in the soil, below which 
crops are likely to respond to added fertilizer or 
ameliorant, and above which they likely will not 
respond (Eckert, 1987, Sims, 2000). 
!ese principles are also applied in tropical soil 
fertility management (Sanchez, 1976) and in the 
Fertility Capability Classi"cation (FCC) (Sanchez 
et al. 2003) to identify inherent soil constraints and 
chemical limitations to soil fertility. FCC does not 
deal with soil attributes that can change in less than 
one year, but those that are either dynamic at time 
scales of years or decades with management, as well 
as inherent ones that do not change in less than a 
century. FCC modi"ers for soil reaction include 
criteria for sulphidic soils, aluminium toxicity, basic 
reaction, alkalinity, and salinity. !e FCC system 
does not include routine soil tests used for N and P 
fertilizer recommendations. 
However, AfSIS measurements provide relevant 
modi"ers for all three major nutrients, N, P and 
K, at Category 2, “slow, management-sensitive”.  
!e availability of N at this time scale is assessed 
through soil organic C measurements since C:N 
ratio of soil organic matter varies between relatively 
narrow limits around 10:1 in agricultural soils.  
!ere are mineralogical modi"ers (low nutrient 
capital reserves modi"ers) for K, re$ecting the fact 
that K availability is often determined by a mod-
erately slowly available “"xed” pool.   Stocks of soil 
P are divided between soil organic matter (assessed 
by soil organic C), sparingly soluble minerals and 
inorganically sorbed components.  Availability of 
the latter is determined by phosphate sorption char-
acteristics of soil Fe and Al oxides and amorphous 

A carbon fraction module is proposed to determine 
carbon fractions, including particulate organic mat-
ter and charcoal carbon ( Janik et al. 2007). Cali-
bration of these pools to infrared spectra provides 
a valuable basis for soil carbon modelling (e.g. 
Parton et al., 1988; Zimmerman et al., 2007). !ese 
analyses will be conducted on subsets of samples in 
specialized laboratories.
!e impacts of historic land use on soil organic car-
bon can be quanti"ed using stable carbon isotopes 
(Boutton et al., 1998; Vågen et al., 2006a; Awiti 
et al., 2008), namely the relative ratio of the heavy 
isotope 13C to the light isotope 12C in a sample, 
relative to the Vienna-Pee Dee Belemnite (PBD) 
limestone standard. In C3 plants CO2 is reduced to 
a three-carbon compound and they generally exhibit 
13C organic values in the range of – 32  to – 20 ‰, 
with a mean of -27 ‰ for woody plants. C4 plants, 
however, reduce CO2 to a four-carbon compound 
and show 13C values ranging from -17 to -9 ‰, 
with a mean of -14 ‰. 
Stable carbon isotopes can also be used to de-
termine the SOM turnover rates at local scales 
(Balesdent and Mariotti 1996, Bernoux et al. 1998), 
identify vegetative sources of organic matter to the 
soil (Roscoe et al. 2001, Krull et al. 2007), and ad-
dress the impact of land conversion on soil condi-
tion (Vagen et al. 2006, Awiti et al. 2008, Schulp 
and Veldkamp 2008).
A natural 13C abundance module is analyzed on a 
subset of AfSIS reference samples. Carbon contents 
are analyzed on acidi"ed samples by dry combustion 
in a C-analyzer. Natural C organic abundance is 
determined with an elemental analyzer coupled with 
an isotope ratio mass spectrometer (EA-IRMS). 15N 
total is also determined using the same approach on 
unacidi"ed samples. Samples are analyzed in a certi-
"ed isotopic analytical laboratory. 
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!e cation balance system also di#ers from temper-
ate agriculture approaches where liming is adjusted 
to bring pH values to prescribed target values. !e 
scienti"c base for the cation balance approach is less 
well established than the su%ciency level approach 
(e.g. McLean et al., 1983; Kopittke and Menzies, 
2007) and is likely to be less economically favorable 
for smallholder agricultural settings. 
However, long-term bene"ts of this approach have 
still yet to be evaluated. AfSIS diagnostic agronomic 
trials will test the value of cation balance approaches 
in sub-Saharan Africa along with the development 
of a holistic approach to integrated soil fertility 
management (Vanlauwe et al., 2009). 
For example, large removals of basic cations in crop 
produce and nitrate leaching may cause acidi"cation 
under cropping if not compensated by application 
of basic cations in lime or organic manures (Fenton 
and Helyar, 2007). If the main source of fertility 
input is poor quality organic resources, low in basic 
cations, then cation depletion and acidi"cation may 
result (Pocknee and Sumner, 1997). 
Advisory services in the US are advocating a 
nutrient su%ciency approach (feed-the-crop) for 
short-term land tenure situations and a build and 
maintain approach (feed-the-soil) for longer term 
land tenure situations where land holders have 
the ability to make the longer-term investments 
(Mengl, 2010). !e concepts are now being applied 
to P and K management. !e feed-the-soil ap-
proach requires less frequent soil and plant testing, 
is less sensitive to soil test errors, and reduces risk of 
yield loss. However, it is not recommended in soils 
that are not able to retain nutrients over the long-
term (e.g. sandy soils prone to leaching), and has 
been more widely adopted in wetter areas of the US 
where yield potentials are higher and risk of drought 
is lower.
!e AfSIS basic soil chemical fertility module is 
designed to provide information needed to support 

volcanic minerals, which often limit P availability 
in tropical soils.  !ese are directly assessed with a P 
sorption index (PSI). 
!e second paradigm is based on cation nutri-
ent balancing, which is the practice of adjusting 
the relative balance of levels of Ca, Mg, K, Na and 
exchangeable acidity in the soil, relative to the total 
cation exchange capacity. !ese concepts are based 
on work by soil testing laboratories (Eckert, 1987) 
and workers such as Albrecht and Smith (1941) 
and Bear and Toth (1948) in the USA, and related 
systems are used in Australia by Mikhail (Kinsey 
and Walters, 1993). 
Soil testing services in eastern Africa and South 
Africa are also using the approach ( J. Cordingley, 
Pers. Comm.). Ca:Mg ratios are also used to guide 
fertilizer recommendations in the USA and Aus-
tralia (Eckert, 1987; Hazleton and Murphy, 2007). 
A key di#erence between the two paradigms, is that 
in the critical limits/FCC paradigm, liming would 
be recommended with the objective to remove Al 
toxicity constraints, whereas in a cation balancing 
system, liming aims to restore Ca levels to target 
levels as a percentage of cation exchange capacity. 
Adjusting the cation balance is claimed to promote 
good soil structure, optimize availability of micro-
nutrients, stimulate microbial activity, reduce root 
diseases, and increase N use e%ciency. 

Figure 17. Laser di$raction particle size analyzer.
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capacity. A review of global literature has shown 
that this PSI, along with closely related variations, 
has been widely useful as a quick means of assessing 
P sorption across di#erent soil types, pH values and 
with fertilizer P sources of both high and low solu-
bility and mineral and organic origins.  Substantial 
Australian research on their often very P de"cient 
soils has established an Australian national standard 
PSI known as the P bu#ering index (Burkitt et al. 
2002).  A major research group in the USA has rec-
ommended a PSI method (Sims 2009) that is close 
to the original one of Bache and Williams (1971).  
American work has also shown that the extent to 
which soil P sorption sites are filled (Psat) is a good 
indicator of P availability to runo# and leachate and 
can be correlated with Mehlich 3 data (extractable 
P, Al, Fe, Ca) (Kleinman and Sharpley, 2002).  
Based on a review, a PSI has been formulated for 
AfSIS.  It needs to cope with the very wide range 
of soils found across Africa.  In Africa, P de"ciency 
much more of a problem than excess, and Allen et 
al. (2001) found that directly measured PSI was 
better correlated with P bu#ering than indirect 
measures.  !erefore, a directly measured PSI is con-
sidered preferable to estimation of PSI or Psat from 
other data. !e method recommended is similar 
that of Sims (2009).  !e value of the result depends 
on the method of P analysis (ICP or colorimet-
ric), time and temperature of equilibration.  Time 
and temperature of 20 hours and 25C respectively 
are proposed, but they may be adjusted to suit the 
laboratory facilities and conditions, and the chosen 
conditions then adhered to throughout the project. 

Basic soil physical properties
!e basic soil physical properties module in AfSIS 
includes dispersed and non-dispersed soil particle 
size analysis, soil moisture release curves and volume 
weight. Engineering properties are treated in a 

both of the above soil fertility paradigms (Table 
1). !e Mehlich 3 extraction method (Mehlich, 
1984; Ziadi and Sen Tran, 2008) is used as it allows 
multiple elements to be analysed from one extract-
ant using inductively-coupled plasma spectroscopy 
(ICP). Mehlich 3 (M-3) soil test levels also cor-
relate well with other commonly used methods that 
use di#erent extractants (e.g. Bray P-1, ammonium 
acetate). M-3 P has also shown to perform well in 
both alkaline and acidic soils across a broad range of 
soil types, despite the possibility of soluble P being 
precipitated by CaF2, a product of the reaction be-
tween NH4F and CaCO3 (Kleinman and Sharpley, 
2002). Calibrations to Olsen P and Bray 1 and Bray 
2 will be provided on reference sets to aid com-
parisons between alternative soil P tests. However, 
exchangeable acidity in AfSIS, is determined by 
unbu#ered KCl extraction so that e#ective values at 
natural soil pH are acquired. 
Extractable nutrients in soil water extracts are also 
determined using total X-ray $uoresence spectros-
copy (see below). If this method proves successful it 
may replace acid extraction procedures in the future.
!e sorption of phosphate (P) is an important factor 
controlling the fate and e#ectiveness of P added 
to soil from mineral and organic fertilizers.  !e P 
bu#er capacity is the particular soil property that 
determines (i) the mobility and thus availability to 
roots of P in the soil solution and (ii) the amount of 
fertilizer P required to increase the soil solution P 
concentration.  It is calculated from the gradient of 
the P sorption isotherm of a soil.  Researchers have 
normally measured P sorption isotherms describing 
a wide range of soil solution P concentrations to 
obtain the P sorption capacity and P bu#er capacity.  
However, this is too time consuming and expensive 
for advisory use.  Bache and Williams (1971) pro-
posed a single-point “P sorption index” (PSI) of soil 
that is calculated from the P remaining in solution 
after addition of only one P concentration.  It has 
been found to be correlated well with the P bu#er 
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problems (e.g. hardsetting) and as an erodibility 
index. In AfSIS, a procedure for determining both 
dispersed and non-dispersed particle size distri-
bution is used to index potential erodibility and 
susceptibility to erosion. !is procedure measures 
micro-aggregate (<0.25 mm) stability, which is a 
slow variable, less sensitive to management than 
macro-aggregate (>0.25 mm) stability. Response 
of particle size distribution to di#erent levels of 
ultrasonic energy can be used to derive an absolute 
measure of soil stability (North, 1976).
All particle size analysis methods have limitations 
and di#erent methods give di#erent results. To 
provide rapid and repeatable comparative estimates 
of particle size distribution, with the objective to 
provide estimates of functional attributes of particle 
size distribution among AfSIS samples, laser dif-
fraction particle size analysis is used. !is is a rela-
tively new technique (e.g. Gee and Or, 2002; Ariaga 
et al. 2006) but has high levels of repeatability and 
can be done using small quantities of soil (<5 g). A 
representative cloud or ‘ensemble’ of particles passes 
through a broadened beam of laser light which scat-
ters the incident light onto a Fourier lens. !is lens 
focuses the scattered light onto a detector array and, 
using an inversion algorithm, a particle size distri-
bution is inferred from the collected di#racted light 
data. Mie theory is used to provide a volume-based 
continuous distribution of particle sizes based on 
the correlation between the intensity and the angle 
of light scattered from particles (Xu, 2000). 
AfSIS samples are analyzed using a Horiba Model 
LA 950A2 with a detectable size range of 0.01-
3000 microns (Figure 17). !e instrument allows 
continuous $ow of a suspended soil sample, to 
which di#erent soni"cation cycles can be applied 
using an in-built ultrasonic probe. !e protocol 
(under development) begins with measurement of 
particle size distribution in dry soil suspended in an 
air stream to provide a measure of microaggregation 
without wetting. Particle size distribution is then 

separate section. Physical measurements on undis-
turbed samples are also treated separately. Hydraulic 
properties are determined through "eld in"ltration 
tests.

Particle size analysis – dispersed and non-dispersed
Soil particle size distribution is a fundamental soil 
property that a#ects many soil functional properties, 
but its determination using conventional hydrom-
eter or pipette methods su#ers problems of poor 
repeatability and reproducibility and variable disper-
sion in many tropical soils, due to cementing actions 
of iron and aluminium hydroxides. 
!ere is uncertainty on what methods best re$ect 
functional aspects of soil particle size distribution 
(e.g. dispersing aggregates using dispersion agents 
may not re$ect functional e#ects in the "eld). In 
fact soil particle size is usually not interpreted di-
rectly to provide information on soil functions but is 
rather a covariate used in predicting or conditioning 
soil functional properties, such as nutrient retention, 
tillage properties, and hydraulic properties. !ere-
fore emphasis should be on rapid and repeatable 
measures rather than accurate measures of particle 
size distribution.
Dry aggregate size distribution has been used as 
an indicator of soil erodibility but it is sensitive to 
weather and short-term land management (Leys et 
al., 2002). Potential erodibility as assessed by dis-
persed and non-dispersed particle size distribution 
is a better candidate ‘slow’ index of soil condition 
(e.g. Ahmed, 1997). !ese indicators may have value 
in diagnosing soils that are susceptible to erosion, 
even though erodibility may be a#ected by a num-
ber of fast variables (e.g. Bryan, 2000).
Various measures of dispersion have been used (e.g. 
Emerson dispersion test, clay dispersion) to clas-
sify soil susceptibility to structural faults and piping 
in subsoil’s (e.g. dam walls), surface soil structural 
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is also analysed using the conventional hydrometer 
method to provide correlations with the laser dif-
fraction measurements.
When sampling permits taking of undisturbed or 
semi-disturbed samples, a modi"ed Emerson dis-
persion test (Field et al., 1997) is done for compari-
son with the laser di#raction results. 

Soil moisture release curves
Soil moisture release curves express the relation-
ship between matric potential and water content in 
soil. !e shape and position of the curve determine 
hydraulic properties, such as in"ltration rate, plant 
available water holding capacity, and aeration. Mat-
ric potential is expressed here in units of work per 
unit weight (m water at 20 C; dimensions L), as this 
unit is easy to visualize (Cresswell and Hamilton, 
2002).
Intact soil cores are required to provide data that is 
representative of "eld macrostructure conditions for 
the range 0 to -30 m potential, but soil "nes are best 
for potentials -30 to -150 m. Due to the di%culty of 
taking and transporting intact soil cores, AfSIS has 
two sub-modules for soil moisture release curves. 
Soil "nes are used for the standard sentinel site 
reference samples, and intact cores, taken from soil 

measured over time in water, followed by soni"ca-
tion cucles, and "nally full dispersion using Calgon. 
!e shift in particle size distribution with these 
treatments is used to provide comparative indices 
of stability (e.g. Muggler et al, 1996). E#ects of 
mechanical and chemical dispersion forces can be 
assessed separately. Destruction of organic matter 
and removal of soluble, salts, gypsum, carbonates, 
and iron and aluminium oxides is not be done with 
this method, as comparisons of ‘functional’ particle 
size distribution is of primary interest, as opposed 
to accurate measurement of ‘absolute’ particle size 
distribution of primary particles. A subset of soils Figure 18. Total x-ray #uorescence spectrometer.

Figure 19. Loading samples on  tray into total x-ray #uorescence 
spectrometer.
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Volume weight
Volume weight is the weight of a known volume of 
soil "nes at a speci"ed water content. Values give 
an indication of soil physical condition and allows 
conversion of test results to volume units. Volume 
weight is determined by weighing a scoop of soil of 
known volume dried to a standard moisture content.

Element pro!ling
AfSIS extends soil "ngerprinting concepts devel-
oped using infrared spectroscopy (Shepherd and 
Walsh, 2007) into the X-ray range using soil total 
element pro"les. All soils contain some of all of the 
naturally occurring chemical elements. Variation in 
the concentration of elements is derived from di#er-
ences in the composition of the parent material and 
from $uxes of matter and energy into or from soils 
over geologic time (Helmke, 2000). Hence element 
pro"les (Kabata-Pendias and Mukherjee, 2007) are 
a marker of di#erences in soil forming factors and 
may therefore form a useful basis for classifying 
soils in a way that relates to inherent soil functional 
properties. 
For example, Rawlins et al. (2009) recently demon-
strated use of element pro"ling for the prediction of 
particle size distribution. Analysis of refractory ele-
ment concentrations have also been used in element 
mass balance estimation  (Chaddwick et al., 1999; 
Kutz et al., 2000). Total elemental ratios can be used 
to indicate degree of soil development and rates of 
weathering (Birkeland, 1999), as well as provide in-
formation on the soils’ maximum nutrient capacity.
In AfSIS, multivariate analysis of element pro"les 
is used as a covariate, in conjunction with infrared 
spectroscopy, to predict soil functional properties. 
Element determinations are also used to assess mi-
cronutrient de"ciencies and heavy metal pollution. 
Emphasis is placed on identi"cation of syndromes, 

pits, are used where feasible. 
For AfSIS reference samples, soil moisture release 
curves are determined using soil "nes in pressure 
plate apparatus (Cresswell and Hamilton, 2002; 
Dane and Hopmans, 2002). !e procedure is 
modi"ed to use repeated measurements at di#erent 
potentials on small (2 cm diameter) reconstructed 
cores. A standard weight of soil "nes is poured into 
the cores, without "rming. Bulk density is measured 
using a calibrated volumetric scoop. Cores are sealed 
o# at the bottom using "ne muslin cloth taped to 
the core. Soil moisture content is determined at 
three potentials only: saturation, -1.0 m and -150 
m. !e two-point method of Cresswell and Pay-
dar (1996) is used to estimate the soil moisture 
characteristic using the Hutson and Cass (1987) 
modi"cation of the Campbell equation, a continu-
ous two-piece function suitable for use in soil water 
simulation models (McKenzie and Cresswell, 2002).
Intact cores are not sampled as part of the standard 
sentinel site protocol, and generally required soil 
pits to be dug to obtain good quality samples from 
diverse soil types. However where a "eld sampling 
module for obtaining undisturbed cores can be 
implemented, full soil moisture release curves using 
pressure plates are done (Cresswell and Hamilton, 
2002).

Figure 20. Benchtop x-ray di$raction spectrometer.
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a constituent of vitamin B12. 
Bioavailability of micronutrients is determined prin-
cipally by soil mineralogy, organic matter, pH, and 
redox reactions (Mortvedt, 2000). AfSIS focuses on 
quantifying the risk factors associated with micro-
nutrient de"ciency syndromes as a basis for rapid 
diagnostic tests using spectral inference methods. 
Micronutrients are determined in soil and soil water 
extracts on AfSIS reference samples. Micronutrients 
are also measured in tissue and grain samples from 
AfSIS agronomic trials.

Heavy metals
Bowen (1979) has suggested that when the rate of 
mining of a given element exceeds the natural rate 
of its cycling by a factor of ten or more, the element 
should be considered a potential pollutant. !us the 
most hazardous trace elements to the biosphere may 
be: Ag, Au, Cd, Hg, Pb, Sb, Sn, Te, and W. Also 
those elements that are essential to plants and hu-
mans, such as Cr, Cu, Mn and Zn, may be released 
in excessive amounts in some regions (Kabata-Pen-
dias and Mukherjee, 2007). 
Soil quality standards for heavy metals are often 
based on the total soil heavy metal concentration 
extracted by strong acid destruction. In many cases, 
di#erences in soil type or soil properties (acidity, 
clay and organic matter concentration) are included 
only marginally, if at all. However, the degree to 
which heavy metals are available to plants or soil 
organisms, or leach to the groundwater largely 
depends on a combination of these soil properties 
and the source of the metals in the soil. For agricul-
ture, one of the key aspects is safe food production, 
apart from groundwater protection and ecological 
aspects. Multiple regression of concentrations of 
heavy metals in crops against their concentrations in 
soil plus other soil covariates, such as pH, clay, and 
organic matter levels is a promising method for set-

not only individual nutrient constraints. For ex-
ample, micronutrient de"ciencies tend to occur in 
sandy soils with low organic matter content, and 
this syndrome can be diagnosed spectrally. Further-
more, interventions often need to be targeted at the 
syndromes and not individual nutrient de"cien-
cies (e.g. build up organic matter to supply missing 
nutrients, increase nutrient retention capacity and 
improve soil structure). 

Micronutrients
Micronutrients, or trace elements, are chemical 
elements that are needed in minute quantities for 
the proper growth, development, and physiology of 
plants, animals or humans (Bowen, 1976). A de"-
ciency of one or more of the eight plant micronutri-
ents will adversely a#ect both the yield and quality 
of crops. !ese are: boron (B), chlorine (Cl), copper 
(Cu), iron (Fe), manganese (Mn), molybdenum 
(Mo), nickel (Ni), and zinc (Zn). Animals need all 
of these elements as well as chromium (Cr), cobalt 
(Co), $uorine (F), iodine (I), selenium (Se), silicon 
(Si), sodium (Na), and vanadium (V). 
Major human micronutrient de"ciencies include Fe, 
I, Se, Zn, and various vitamin de"ciencies. Se and 
Co, although not required by plants, may be enough 
to satisfy human requirements fully in fertile soils; 
however, probably half of all soils are de"cient in at 
least one of the ultra-micronutrients Se, I or Co.
Forti"cation of commercially available staple foods 
is not a solution to malnutrition in subsistence 
farming sectors, and there is need to identify, as-
sess and correct soil micronutrient de"ciencies 
for sustainable agricultural systems and improved 
human health. In particular there is opportunity for 
fertilizer strategies to have signi"cant impacts on 
Zn, Se, and I de"ciencies in humans. Cobalt fertil-
izer may need to be used in some subsistence food 
systems where soil-available Co is low because Co is 
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higher sensitivities and a signi"cant reduction of 
matrix e#ects. Another major advantage of TXRF, 
compared to atomic spectroscopy methods like AAS 
or ICP-OES, is the avoidance of memory e#ects. 
Powders are prepared directly or as a suspension, 
and liquids are pipetted directly onto sample car-
riers. Only small samples of 20 –50 mg of soil are 
required and minimal sample amounts can be in the 
low µg / µL range. !e Lower Limits of Detection 
(LLD) for many elements is close to or below 1 
µg/l.
AfSIS samples are analyzed using a Bruker Picofox 
TXRF instrument at the ICRAF Soil-Plant Spec-
tral Diagnostics Laboratory. Soils are ground to <50 
µm and prepared as suspensions. Sample analysis 
time is about 10 minutes. A protocol for element 
pro"ling of soil water extracts is in preparation to 
estimate element availability to plants.

3.4 Mineral pro!ling
Despite the critical importance of soil mineralogy 
in the determination of soil functional properties 
and as a soil forming factor ( Jenny, 1941), there has 
been relatively little work to move beyond largely 
descriptive studies (Dixon and Weed, 1989; Dixon 
and Schulze, 2002) to the quantitative linking of 
soil function to soil mineralogy (Cornu et al., 2009; 
Andrist-Rangel et al., 2006). New instrumentation 
developments in bench top high-throughput X-ray 
powder di#raction spectroscopy (XRPD) and steady 
improvements in mineral identi"cation databases 
and software have opened up new opportunities for 
quantitative determination of mineral phases on 
large sample numbers. AfSIS extends the infrared 
spectroscopy pro"ling approach (Shepherd and 
Walsh, 2007) to include X-ray di#raction spec-
troscopy. X-ray di#ractograms are directly input to 
pedotransfer functions and mineral phase identi"ca-

ting probablistic standards (Brus et al., 2005). Heavy 
metals are determined in soil and soil water extracts 
on AfSIS reference samples. Heavy metals are also 
measured in tissue and grain samples from AfSIS 
agronomic trials.

Analytical method
AfSIS employs high throughput Total X-Ray 
Fluorescence Spectroscopy (TXRF) (Figure 19). 
!is relatively new technique (KlocKenKämper, 
1997) provides for rapid simultaneous analysis of all 
elements from Na to U (except Mo) with minimal 
sample preparation time. !e main principle of X-
ray Fluorescence Spectroscopy is that atoms, when 
irradiated with X-rays, emit secondary X-rays – the 
$uorescence radiation. 
On this basis XRF analysis is possible because 
(i) the wavelength and energy of the $uorescence 
radiation is speci"c for each element, and (ii) the 
concentration of each element can be calculated 
using the intensity of the $uorescence radiation. 
Standardization is internal and only requires addi-
tion of an element that is not present in the sample 
for quanti"cation purposes, and no external stan-
dardization is required in most cases.
A monochromatic X-ray beam is directed onto the 
sample at a very small angle (< 0.1°) causing total 
re$ection of the beam. !e characteristic $uores-
cence radiation emitted by the sample is detected 
by an energy-dispersive detector and the intensity 
is measured by means of an ampli"er coupled to a 
multichannel analyzer. 
!e main di#erence with respect to common XRF 
spectrometers is the use of monochromatic radia-
tion and the total re$ection optics. Illuminating the 
sample with a totally re$ected beam reduces the 
absorption as well as the scattering of the beam in 
the sample matrix. Resulting bene"ts are a greatly 
reduced background noise, and consequently much 
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Functional property Inference method Measured ‘reference’ properties
Soil physical properties

Texture type (FCC) in topsoil 
and subsoil

1. Texture type calibrated to 
spectra

2. Organic carbon calibrated 
to spectra

Particle size distribution; depth restrictions from "eld data for 
R substrata type; soil organic carbon in top 50 cm for organic 
soil (O) type.

Waterlogging modi"er (FCC) - Field data.
Strong dry season modi"er 
(FCC)

Climatic data layer.

Low soil temperatures modi"er 
(FCC)

- Climatic data layer.

Gravel modi"er (FCC) Coarse fraction weight Coarse fraction as percentage weight of total sample.
Slope modi"er - Field data
High erosion risk modi"er 
(FCC)

1. Class direct from PSD

2. Class calibrated to spectral 
discontinuity

Particle size distribution (PSD). Soil depth and slope from 
"eld data.

Soil moisture release curve; upper 
and lower limits of plant available 
water; available water holding 
capacity

1. Mositure release curve pa-
rameters calibrated to spectra

2. PTF-estimated moisture 
release curve parameters 
calibrated to spectra

Moisture release curve; particle size distribution, organic C, 
bulk density.

Erodibility; hardsetting/crust-
ing risk

Class calibrated to spectra Dispersed vs non-dispersed particle size distribution; soil 
organic C; Mehlich 3 Na; XRPD data.

Saturated hydraulic properties In"ltration curve parameters 
calibrated to topsoil and 
subsoil spectra

Field measured in$itration curves.

Unsaturated hydraulic properties PTF-estimated hydraulic pa-
rameters calibrated to spectra

Particle size distribution, organic C, bulk density; XRPD data.

Engineering properties (plasticity 
index, liquid limit; tunelling/
piping; leaking; slumping; crack-
ing; optimum moisture content; 
USCS class)

Classes calibrated to spectra Particle size distribution (dispersed vs non-dispersed); plastic 
and liquid limits; coarse fraction; organic C; XRPD data.

Table 2. Functional soil properties and their inference from reference properties
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Crone micronizing mill. !e mixture is then dried 
at 80 oC or centrifuged at high speed for 10 min 
and decanted. Hexane is then added to the sample 
in the ratio of 0.5 ml hexane to 1 g of sample. After 
mixing the sample is dried at 80 oC and then sieved 

tion and quanti"cation are used for interpretation.
X-ray powder di#raction requires that a sample be 
prepared as a randomly oriented powder. For prepa-
ration of powder samples from soil "nes, wet milling 
with water or ethanol (Methanol) is done in a Mc-

Functional property Inference method Measured ‘reference’ properties

Soil chemical properties
Soil organic carbon and nitrogen 
pools

Pool size calibrated to spectra Total C, organic C and N, particulate organic C, charcoal C

Sul"dic modi"er (FCC) Class calibrated to spectra pH
Aluminium toxicity for most 
crops modi"er (FCC)

Class calibrated to spectra pH, Exch. Acidity; Mehlich 3 Al.

No major chemical limitations  
modi"er (FCC)

Class calibrated to spectra Exch. Acidity; Mehlich 3 Al.

Calcareous modi"er (FCC) Class calibrated to spectra Inorganic C, pH
Salinity modi"er (FCC) Class calibrated to spectra EC, pH
Alkalinity modi"er (FCC) Class calibrated to spectra pH, Mehlich 3 Na
Geological salinity risk Class direct from XRPD XRPD quanti"cation of souble minerals
Lime requirement and source 
type

1. Requirement calibrated to 
spectra

2. Source type calibrated to 
spectra

Exch. acidity; Mehlich 3 cation balance; pH; particle size 
distribution

Low available P Class calibrated to spectra Mehlich 3 P; P sorption index; XRPD/TXRF data; particle 
size distribution

Environmental P risk Class calibrated to spectra Mehlich 3 P; P sorption index; XRPD/TXRF data; particle 
size distribution

Micronutrient de"ciency Class calibrated to spectra Mehlich 3 micronutrients, pH; particle size distribution; soil 
organic C; TXRF/XRPD data.

Heavy metal pollution Class calibrated to spectra TXRF soil and extracts; particle size distribution; soil organic 
C; pH.

Anion retention capacity Class calibrated to spectra Exch. Acidity; Mehlich 3 H, A; pH; organic C; particle size 
distrubution; XRPD data.

High pesticide retention/leach-
ing risk

Class calibrated to spectra Organic C, pH, particle size distrubution; XRPD data.

Table 2 cont.
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(such as chiller, computer system, display) and needs 
only normal mains power supply. !e instrument 
is equipped with a LYNXEYE compound silicon 
strip, 1-dimensional detector with !eta / !eta 
geometry. !e angular range is -2.5 to 145° 2!eta 
with an accuracy of ± 0.02° throughout the measur-
ing range. !e instrument is integrated with the 
DIFFRACplus TOPAS graphics based, non-linear 
least squares pro"le analysis program. TXRF soil 
element information is also used to focus mineral-
ogy searches. 
Identi"cation of X-ray minerals is achieved by com-
paring the X-ray di#raction pattern (di#ractrogram) 
obtained from an unknown sample with an inter-
nationally recognized database (Powder di#raction 
"le, PDF) containing reference patterns with more 

through a 250 µm sieve. A fraction or portion of the 
randomly oriented powder is loaded into a plastic 
sample holder by the razor tampered method. 
For more detailed analysis of clay fractions, samples 
are soaked with water and sonicated for 5 minutes.  
!e mixture is transferred into a volumetric $ask 
and left overnight to allow the coarser material to 
settle and the clay suspension is then siphoned into 
a beaker and "ltered with a vacuum "lter. !e clay 
on the "lter is then mounted on a glass slide and air 
dried.
XRPD measurements are done using a benchtop 
X-ray di#ractometer system (Bruker D2 Phaser). 
!e D2 Phaser is a high quality integrated XRPD 
system that does not require external components 

Functional property Inference method Measured ‘reference’ properties
Soil organic carbon pools Pool size calibrated to spectra Total C, organic C, particulate organic C, charcoal C.

Mineralogical properties
Low nutrient capital reserves 
modi"er (FCC)

Class calibrated to spectra Mehlich 3 K, CEC; XRPD/TXRF data

High P "xation by Fe and Al 
oxides modi"er (FCC)

Class calibrated to spectra P sorption index; Mehlich 3 P, Al, Ca, Fe; XRPD/TXRF data. 

Amorphous volcanic modi"er 
(FCC)

Class calibrated to spectra pH; XRPD data; P sorption

Cracking clays modi"er (FCC) Class calibrated to spectra, 
PSD

Particle size distribution; XRPD data; Linear shrinkage

High leaching potential modi"er 
(FCC)

Class calibrated to spectra Mehlich 3 cations, CEC; Particle size distribution; XRPD 
data.

General soil fertility rating Class calibrated to spectra Mehlich 3 cations, exch. acidity, pH, particle size distribution, 
coarse fraction, organic C, XRPD and TXRF data.

Biological properties
Low organic carbon saturation 
modi"er (FCC); with Walsh & 
Vagen modi"cation.

Saturation de"cit calibrated 
to spectra

Organic C, sand; local and global reference values from AfSIS 
database based on land cover, 13C.

Table 2 cont.
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Derivation of the Atterberg limits from the soil 
moisture release curve has been proposed on theo-
retical grounds and has shown promise for Cana-
dian soils (McBride, 1989). 
!e liquid limit, upper plastic limit, of a soil repre-
sents the moisture content where the primary par-
ticles or aggregates are almost completely separated 
by interstitial water. !is point is analogous to the 
moisture content above which water is retained with 
essentially no force, or the upper $ex point of the 
desorption curve. 
Similarly, the point at which the remaining ad-
sorbed water is in a highly rigid and structured state, 
or the lower $ex point, should correspond with the 
point of maximum soil cohesion in most soils (i.e. 
the plastic limit or lower plastic limit). It follows 
that the region of the curve between these $ex 
points represents the range of moisture content over 
which a soil exhibits plastic properties. 
Soil shrinkage is used by engineers as an important 
factor determining material stability associated with 
building and soil conservation structures, and by 
agriculturalists in relation to tillage and soil physi-
cal rehabilitation. !e linear shrinkage test based 
on the Australian Standards Association (McGarry, 
2002) is used by AfSIS as it has shown to be more 
reproducible than several alternative tests.  
Hygroscopic moisture content of the soil is associ-
ated with a number of properties such as surface 
area, cation exchange capacity, liquid limit, swelling 
potential, and electrical properties (conductivity 
and dielectric constant). Hygroscopic moisture is 
determined as the moisture content of air-dry soil, 
determined by oven-drying at 105 oC.

3.6 Radionuclides
Fallout radionuclides inventories of 137Cs, 210Pb 

than 70000 phases. Quantitative phase analysis 
of crystalline powder samples is done using a full 
pattern "tting methods (Rietveld method e.g. using 
TOPAS). A library of African minerals is also being 
established as an aid to pattern "tting methods.

3.5 Engineering properties
Soil mechanical properties are not only important 
for many engineering decisions (e.g. road construc-
tion, dam construction, earthworks) but also deter-
mine structural stability and tillage properties (e.g. 
workability) of soils. 
AfSIS determines several soil engineering properties 
on reference samples, in addition to those deter-
mined in the basic soil physical properties module. 
!ere is a wide range of soil tests used for engineer-
ing purposes, however, a small set of tests has been 
selected for AfSIS, on the basis of ease of use and 
ability to infer many other engineering properties 
(Bell, 2000; Hazelton and Murphy, 2007). 
!ese are the Atterberg consistency limits, linear 
shrinkage test, and hygroscopic water content. !ese 
are capacity measurements, which are constant 
but which di#er by location (i.e. slow variables) as 
distinct from intensity measurements, which are 
dynamic with respect to internal or external condi-
tions, and include stress/strain and soil strength (fast 
variables) (Horn and Baumgartl (2000).
!e Atterberg consistency limits (e.g. Kirby, 2002) 
are the most meaningful and widely interpreted 
of soil engineering indices, being used to estimate 
the shear strength and bearing capacity, compress-
ibility, swelling potential, and speci"c surface of 
soils. However, there are problems with the poor 
reproducibility of the standard methods (soil thread 
method for liquid limit; cone penetrometer or Casa-
grande method for plastic limit). 
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critical levels needed to maintain key soil processes 
(Sanchez et al. 2003; Abbot and Murphy, 2007). 
!is is bourne out by the lack of soil biological 
indicators in soil test interpretation manuals (e.g. 
Landon, 1984; Brown, 1987; Peverill et al., 1999; 
Hazelton and Murphy, 2007; McKenzie et al. 2008). 
Most methods of soil biological characterisation 
require fresh samples or large samples or special 
sample preservation techniques, such as freeze-
drying, and this module therefore requires an 
additional "eld sampling campaign. Analysis of air-
dried samples for DNA pro"ling is done using the 
procedures below. A module for soil faunal DNA 
pro"ling using fresh samples is under development.

Soil sampling and DNA isolation
!e protocol for sampling soils has been outlined 
previously (Fierer and Jackson, 2006), however, in 
AfSIS the air-dried 2-mm sieved "ne fraction will 
be used. Approximately 10–20 g of composite soil is 
required for analysis.  Bags of air dried soil samples 
are shipped (preferably via DHL, UPS, FedEx, or 
"rst class mail) boxed or contained within a Styro-
foam cooler, with the bags of soil secured within the 
container using packing material (e.g., newspaper or 
bubble wrap) to the micorbial laboratory for analy-
sis. Upon receipt, the samples are archived at -80°C 
until DNA extraction.
For each of the composite soil samples, ~10 g of 
soil is removed and further homogenized under 
liquid N2 using a mortar and pestle.  Soil commu-
nity DNA is then extracted from a 0.5 g subsample 
using a commercial extraction kit (PowerSoil DNA, 
MoBio Laboratories, Carlsbad, CA, USA).  After 
an additional incubation step (65°C for 10 min 
followed by 2 min of bead beating) to optimize soil 
community DNA extraction and limit shearing, the 
manufacturer’s protocol are followed.  Eluted DNA 
is be stored at -20°C until used in PCR ampli"ca-

and 7Be are often used to estimate rates of soil 
erosion and/or deposition (soil redistribution) in 
landscapes (e.g. Owens and Collins, 2006). Analysis 
is conducted by gamma-ray spectroscopy (e.g. Bas-
karan et al., 1991). Analysis is slow (e.g. 24-hours 
per sample) and expensive and thus only restricted 
sets of AfSIS reference samples are analysed for 
137Cs, and 210Pb. Analysis is done in specialized labo-
ratories in the USA and Europe.
Airborne and ground-based gamma-ray spectros-
copy is also used in geophysical survey to detect 
natural emission of gamma radiation from the 
upper 0.3-0.4 m of the land surface. Spontaneous 
radioactive decay of unstable isotopes in rocks and 
soils produces gamma radiation and radioelement 
pro"les relate to the mineralogy and geochemistry 
of the soil regolith and can be used as a predictor in 
digital soil mapping (Wilford, 2008). 
Radionuclide pro"ling of AfSIS soil reference 
samples in the laboratory by gamma ray spec-
troscopy is being investigated in preparation for 
airborne surveys, which may be feasible in Africa 
in the future. It is proposed to analyze samples us-
ing a Bruker laboratory HPGe spectrometer with 
shield. Separate and simultaneous measurement of 
the activity of 100 radionuclides is feasible with this 
technique.

3.7 Soil biological properties
Soil biological processes are essential to the pro-
duction and environmental services of soils. !ese 
processes include decomposition, nutrient cycling, 
SOM formation and mineralization, soil aggrega-
tion, regulation of atmospheric trace gases and the 
biological control of soil-bourne plant and animal 
pests and diseases (Lavelle et al., 1994). However, 
soil science is still challenged to "nd interpretable 
‘slow’ indicators of soil biological function and their 
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or that are reads which are below the expected 
amplicon size for a given primer set.  !e remain-
ing sequences are binned into phylotypes (≥ 97% 
similarity) using Cd-Hit (Li and Godzik, 2006) and 
grouped by samples according to their unique 12 bp 
bar-code.  Phylotypes are then assigned an identity 
(at ≥ 60% similarity level) based on comparisons 
with sequences in a public database (Ribosomal 
Database Project; http://rdp.cme.msu.edu/) under 
the RDP taxonomic structure (Cole et al., 2005).  A 
composite alignment is created using representative 
sequences for each phylotype identi"ed using the 
NAST alignment function of the GreenGenes pub-
lic database (http://greengenes.lbl.gov/) with hyper-
variable regions removed with a PH Lane Mask.  
!e sequence alignment is then used to infer phylo-
genic relationships between all sequences in order to 
calculate a community-level phylogenetic distance 
between each pair of samples.  Sequence quality 
assurance, taxonomic assignment, and subsequence 
analyses of community structure are handled in the 
QIIME software package (http://qiime.sourceforge.
net/).  
!is work$ow, as well as other standard analyses for 
soil communities (prokaryotic and eukaryotic), have 
been described in previous publications [Fierer et 
al., 2008; Hamady et al., 2008; Costello et al., 2009 
(see supplementary material); Lauber et al., 2008; 
2009].  
Finally, sequences representative of individual 
phylotypes will be deposited in the GenBank short 
read archive and all data related to sequences will 
be made available online via a publicly-accessible 
database.

Carbon saturation de!cit
Sanchez et al. (2003) have  proposed carbon satura-
tion de"cit as a biological indicator, where organic 

tion.

PCR-ampli"cation of rRNA genes and bar-coded 
pyrosequencing
Preparation of extracted DNA for pyrosequencing 
follow the protocol described previously [Fierer et 
al., 2008; Costello et al., 2009 (see supplementary 
material); Lauber et al., 2009].  Brie$y, the method 
includes targeted ampli"cation (using group-speci"c 
primers) of a portion of the small-subunit ribosomal 
gene (16S for bacteria and archaea or 18S for fungi), 
triplicate PCR-product pooling (per sample) to 
mitigate reaction-level PCR-biases, and Roche 454 
pyrosequencing.  Forward primers include a Roche 
454 A pyrosequencing adapter, while reverse prim-
ers incorporated a bar-code sequence (unique to 
each individual sample), a 2bp linker, and a Roche 
454 B sequencing adapter.  
PCR reactions are preformed in 25 µl reactions, 
each containing forward and reverse primers, com-
mercial PCR master-mix kit, and genomic com-
munity DNA as a template.  PCR cycling param-
eters are speci"c to individual primer sets.  Pooled 
triplicate reactions are quanti"ed using PicoGreen 
dsDNA assay (Invitrogen, Carlsbad, CA, USA).  A 
single composite sample (representing all soil sites) 
is then produced that contains the bar-coded PCR 
product, normalized in equimolar amounts to pro-
duce consistent reads, which is then pyrosequenced 
on a Roche GS-FLX 454 automated pyrosequencer.

Sequence processing and assigning taxonomic 
identity
Prior to analyses, raw sequence data generated from 
the 454-sequencing runs are processed to assure 
quality and to assign a taxonomic identity to each of 
the  >400,000 sequences per run.  In brief, sequences 
are removed from the dataset which have uncorrect-
able bar-codes or that have low quality scores (<25), 
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to predict values of soil functional properties for 
the entire set of sampled soils (minimum of 32,280 
samples) based on the laboratory reference measure-
ments (minimum of 1,664 samples). 
Digitial soil mapping in turn relates these values to 
geospatial information to predict values of soil func-
tional properties at any given geographical location. 
!e basic form of the pedotransfer model is: 

S = f(Q) + e 
Where S is a soil property or condition of interest, 
Q is a vector of covariates (such as laboratory re$ec-
tance data) and e is an uncertainty parameter.
Several approaches to predicting and interpreting 
soil functional properties are used:

Calibration of individual measured sample ref-
erence measurements to infrared spectral data. 
Other high throughput laboratory measured 
properties may also be included (e.g. TXRF, 
XRPD data) as predictors along with the spec-
tral data. Various data reduction methods are 
used to reduce the dimensions of the spectral 
data. 
Calibration of derived or interpreted soil func-
tional properties or classes to infrared spectral 
and other high throughput data. !e derived 
properties or classes may be based on multi-
variate analysis of reference data (e.g. principal 
components or cluster analysis) or some other 
criterium, such as the probability of being 
above or below a critical limit (e.g. ), composite 
indicators (e.g. exchangeable Ca:Mg ratio), or 
a soil management receommendation (e.g. lime 
requirement).
Multivariate classi"cation of soil spectral data 
for the entire sampled set of soils, which is then 
interpreted in terms of the distributions of soil 
reference measurements (e.g. see Vågen et al., 
2006b). Multivariate analysis of soil reference 

carbon levels are compared with undisturbed or 
semi-natural reference sites under the same soil 
type. In AfSIS a modi"cation of this approach is 
used by "rst normalizing organic carbon with sand 
content, recognizing the textural control on poten-
tial carbon concentrations.

3.8 Plant growth bioassay
Plant growth bioassays conducted using pot studies 
constitutes a useful tool to supplement "eld testing 
for diagnosis of plant nutrient de"ciencies and de-
velopment of soil fertility management recommen-
dations. Plant bioassays are recommended in AfSIS 
for benchmarking relative productivity of soils 
without added ameliorant and comparative quanti-
"cation across soils of responses to nutrient inputs. 
Procedures describe by Awiti (2006) are recom-
mended combined with infrared spectral analysis of 
soil and leaf material. In addition fertiliser response 
trials are conducted at selected AfSIS sentinel sites.

3.9 Analyses for soil 
classi!cation
A number of additional laboratory tests are required 
for soil classi"cation in the Soil Taxonomy (Soil 
Survey Division Sta#, 1993) and FAO/UNESCO 
(FAO-Unesco-ISRIC,  1990) systems. !ese analy-
ses are performed in specialized laboratories (e.g. 
through ISRIC or USDA) in conjunction with a 
separate "eld campaign in this optional module.

3.10 Pedotransfer functions
AfSIS emphasizes soil functional properties that 
change only slowly in relation to edaphic and man-
agement factors. Pedotransfer functions are used 
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ferred properties to spectral data, as proposed in the 
spectral library approach proposed by Shepherd and 
Walsh (2002; 2007), to reduce error propagation 
and improve model "ts. Caution is advised is trans-
ferring pedotransfer functions from one population 
of soils to another.

3.11 Interpretation of soil tests
Currently there is no soil test interpretation guide 
available for African soils and so AfSIS is develop-
ing one, drawing strongly on guidelines available 
for tropical soils from the FCC system (Sanchez et 
al., 2003) and international soil survey experience 
(e.g. Landon, 1984), and work in Australia (e.g. 
Peverill et al., 1999; Hazelton and Murphy, 2007), 
USA (e.g. Benton Jones, 2003) and Latin America 
(e.g. Cochrane et al., 2005). Synthesis of Africa soils 
work and new agronomic testing in AfSIS will also 
inform this guide. 
Key functional properties currently considered in 
AfSIS are given in Table 2, and this framework is 
being further developed under the project.
Spectra is de"ned as infrared spectral data plus op-
tionally other types of spectral data (XRPD, TXRF, 
laser di#raction particle size). Pedotransfer func-
tions (PTF) are sometimes used as an intermediate 
step to estimate funtional properties from reference 
measurements; the PTF-predicted values are then 
calibrated to spectra.
Table 2 places heavy reliance on de"nition of 
interpreted recommendation classes and the direct 
calibration of classes to spectra, although in some 
cases the classes may be derived retrospectively 
after calibration of continuous variables to spectra. 
Classes are drawn up based on guidelines from the 
literature (e.g. FCC) and expert opinion, with em-
phasis on tropical and sub-tropical soils. 

values may also be used as an interpretation 
guide.
Calibration of reference measurements or de-
rived values to infrared spectral data and other 
georefernced covariates in spatially explicit 
hierarchical models. Reference measurements 
are directly included in digital mapping models. 
Usually the number of reference measurments 
available limits this approach, however prior 
strati"cation based on geographical variables 
may often be feasible.

A number of di#erent mutlivariate calibration 
algorithms are tested, including partial least squares 
regression (e.g. Shepherd and Walsh, 2002; Terho-
even-Urselamans et al., 2009), boosted classi"ca-
tion and regression trees (e.g. Shepherd et al., 2005; 
Brown et al. 2006), and support vector machines in 
conjunction with wavelet decomposition. 
!e spectral library approach outlined in Shep-
herd and Walsh (2002) is applied. Various spectral 
distance metrics are used to determine whether an 
unknown sample falls within the same population 
as the calibration samples (e.g. Naes et al., 2002; 
Tranter et al., 2009). 
As far as possible soil functional properties are 
measured directly on the reference soil samples and 
calibrated directly to soil infrared spectra (Shepherd 
et al., 2002). Where soil functional properties can-
not be directly measured (e.g. unsaturated hydraulic 
conductivity) pedotransfer functions published from 
the literature may be used to infer values of the 
functional properties from the laboratory reference 
data (e.g. Campbell 1985; Minansy et al., 2008). 
McBratney et al. (2006) proposed infering func-
tional properties as a second step using spectrally 
inferred primary properties (e.g. clay, sand, organic 
matter). 
In AfSIS, we propose direct calibration of either 
the measured functional properties or their in-
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as de"cient, su%cient and high. DRIS was actu-
ally developed in South Africa (Beau"ls, 1973) and 
was adapted and advanced in the USA by Sumner 
(1977; 1979). DRIS uses ratios of all possible nutri-
ent pairs compared with ratios found in high yield-
ing crops. Baldock and Schulte (1996) combined 
both systems into the Plant Analysis with Standard-
ized Scores (PASS) system. 
AfSIS uses TXRF for simultaneous multielement 
tissue and organic resource analysis for many of the 
elements from Na to U, except Mo. N analysis is 
done using near infrared spectroscopy calibrated to 
combustion or Kjeldahl reference analysis (Shep-
herd et al. 2003). Organic resource quality classes 
are also derived from NIR analysis (Shepherd et al. 
2003).

3.13 De!nitions and 
abbreviations
ASD. Analytical Spectral Devices "eld spectrom-

eter.
BBN. Bayesian belief networks. Graphical models 

consisting of nodes (boxes) and links (ar-
rows) that represent system variables and 
their cause-and-e#ect relationships. Also 
known as belief networks, causal nets, 
causal probabilistic networks, probabilistic 
cause e#ect models, and graphical prob-
ability networks. 

DRIS. Diagnosis and Recommendation Integrated 
System for interpreting plant analysis 
results.

Infrared spectroscopy. Infrared spectroscopy is taken 
to include di#use re$ectance, transmis-
sion, trans$ectance and attenuated total 
re$ectance spectroscopy within the visible 
(vis; 0.35 µm to 0.75 µm), near infrared 

Uncertainty in class assignment from input of 
either data, literature values, or expert opinion can 
be represented, for example in the form of Bayes-
ian Belief Networks (e.g. Bashari et al., 2009). Such 
tools are becoming an increasingly popular model-
ling tool in ecology and environmental management 
because their diagramatic form aids communication 
(e.g. Cain et al., 2003), while using probabilities 
to quantify relationships between model variables, 
explicitly allows uncertainty and variability to be 
accommodated in model predictions. 
!is approach can be extended to include spec-
tral data as well, if reduction to a small number of 
spectal dimensions is su%cient to provide adequate 
prediction. !e functional properties or guidelines in 
turn can be incorporated into decision models that 
include other variables. Further functional capac-
ity interpretations are added as new user needs are 
identi"ed. A key output is the prevalence of di#er-
ent soil constraints at site and cluster levels to guide 
intervention strategies.

3.12 Plant analysis
Plant analysis is done to support AfSIS agronomic 
trials and in particular to couple plant tissue analysis 
with soil analysis for diagnosis of soil fertility 
constraints. In particular there is need to develop 
guidelines for limiting levels of elements and ele-
ment ratios in plant tissues in African soils for 
major crops. In addition analysis of the composition 
of organic and inorganic ameliorants used in AfSIS 
trials is required.
!ere are two main types of systems used for 
intepreting plant analysis: the Su%ciency Range 
system (SR), and the Diagnosis and Recommen-
dation Integrated System (DRIS) (Baldock and 
Schulte, 1996). SR considers individual elements 
with respect to critical limits de"ning ranges such 
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in a semi-solid starts to exhibit plastic 
behavior.

Reference measurements. Standard laboratory mea-
surement methods used for soil charac-
terization that are performed on sample 
subsets and then calibrated to soil infrared 
spectra for purposes of predicting values 
for the whole sample set. !ese are usually 
time-consuming and expensive analyses 
that are di%cult or costly to perform on 
large numbers (thousands) of samples.

Repeatability is the agreement between analytical 
results for the same sample analysed re-
petitively by the same operator using the 
same instrument. See also reproducibility.

Reproducibility is the agreement between results 
from the same sample analysed repetitive-
ly using di#erent instruments and opera-
tors. See also repeatability.

SR. Su%ciency Range system for intepreting plant 
analysis results.

SSN. Sample serial number. A sequential number 
assigned to samples logged into a labora-
tory. !e number consists of a site code 
(e.g. S for Salien) followed by a number 
from 000,000 to 999,999.

TXRF. Total X-ray $uorescence spectroscopy.
USCS. Uni"ed Soil Classi"cation System classes 

soils for engineering purposed on the 
basis of particle size, gradation, plastic-
ity index, and liquid limit (US Bureau of 
Reclamation 1960).

USDA. United States Department of Agriculture.
VNIR. Visible near infrared di#use re$ectance 

spectroscopy (wavelength range 350 to 
2500 nm).

XRPD. X-ray powder di#raction spectroscopy.

(NIR spectroscopy; 0.75 µm to 2.5 µm) 
and mid infrared (mid-IR spectroscopy; 
2.5 µm to 25 µm) wavelength range.

ISRIC. International Soil Reference Information 
Service.

Laser di#raction particle size analysis. Particle size 
analysis based on light di#raction from 
particles suspsended in an air or liquid 
stream.

Liquid limit. Depending on the water content of 
the soil, it may appear in four states: solid, 
semi-solid, plastic and liquid. !e liquid 
limit is the water content where a soil 
changes from plastic to liquid behavior.

LLD. Lower limit of detection. !e lowest quantity 
of a substance that can be distinguished 
from the absence of that substance (a 
blank value) within a stated con"dence 
limit (generally 1%).

NIR. Near infrared di#use re$ectance spectroscopy 
(wavelength range 8,000 to 4,000 cm-1 or 
1,250 nm to 2,500 nm).

MIR. Mid-infrared di#use re$ectance spectroscopy 
(wavelength range 4,000 to 400 cm-1 or 
2,500 to 25,000 nm).

MPA. Multipurpose Analyzer. !e model of the 
Bruker Fourier-Transform near infrared 
spectrometer used in the AfSIS spectral 
laboratory network.

Pedotransfer function. Predictive functions of cer-
tain soil properties from other more avail-
able, easily, routinely, or cheaply measured 
properties. 

Plastic limit. Depending on the water content of 
the soil, it may appear in four states: solid, 
semi-solid, plastic and liquid. !e plastic 
limit is the water content where a soil 
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4 Data Management

Geomatics is the multidisciplinary science and tech-
nology of gathering, storing, analyzing, interpreting, 
modeling, distributing and using georeferenced 
information. 
It comprises a broad range of disciplines, including 
surveying and mapping, remote sensing, geo-
graphical information systems (GIS), and the global 
positioning system (GPS). !ese, in turn, draw 
from a wide variety of other "elds and technologies, 
including computational geometry, computer graph-
ics, digital image processing, multimedia and virtual 
reality, database management systems (DBMS), 
spatiotemporal statistics, arti"cial intelligence, 
communications, and Internet technologies among 
others.
In AfSIS, the above-mentioned disciplines form an 
integrated part of project activities. Large amounts 
of data are collected in "eld as part of the AfSIS 
"eld surveys, and large data sets containing soil 
reference data and infrared (IR) spectral signatures 
are generated in the laboratory. In addition, we 
collect and store data from existing soil legacy data 
archives (soil pro"le descriptions, etc). We also col-
lect archived satellite imagery and new acquisitions 
of satellite data.
!e sheer volume of data obviously requires ap-
propriate computer hardware to manage, mine and 
analyze. However, computing power is not enough 
and clever approaches are needed for intelligently 
managing the data, as well as to "nd meaningful 
patterns and information (data mining).

In summary, the main types of data stored in AfSIS 
databases and archives include;

Sentinel site survey baselines
In"ltration data
Soil data

Total X-ray $uorescence
X-ray di#raction
IR spectral data
Laser di#raction particle size data
Soil chemical data

Satellite images
Quickbird / WorldView 2
Landsat (MSS, TM, ETM+)
ASTER
MODIS
NOAA AVHRR

Other remote sensing (GIS) covariates
SRTM DEM and derivatives
ASTER GDEM
Climate data

Soil legacy data
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4.1 Data storage
!e AfSIS databases have been developed on several 
platforms, but with the FileMaker database system 
as the central system for storage and data manage-
ment (Figure 21). 
We chose FileMaker because we needed a high per-
formance database system that was able to handle 
tables with a large number of "elds, and because 
one of our main requirements was a database system 
that is reasonably mobile and user friendly. !e proj-
ect has several nodes where NIR spectral data are 
stored and data-entry is conducted, and databases 
are hence distributed across regional laboratories. 
User friendly interfaces for data-entry have been 
developed using this platform.
Field data collection is conducted using GPS units 
running Windows Mobile installed, and the Cyber-
Tracker software package (http://www.cybertracker.
co.za). !ese data sets are ingested into the File-
Maker database.

Open source databases
!e AfSIS FileMaker databases are also mirrored 
in MySQL and PostgreSQL databases, and to some 
extent in SQLite.
MySQL (http://www.mysql.com) has become the 
world’s most popular open source database. !e 
main reasons for this are that it’s easy to use, reliable 
and has consistent performance. It provides com-
prehensive support for application development, in-
cluding stored procedures, triggers, functions, views, 
and cursors. MySQL also provides connectors and 
drivers (ODBC, JDBC, etc.) that allow all forms of 
applications to make use of MySQL as a preferred 
data management server. !is is one of the principal 
reasons for the use of MySQL in AfSIS, and our ef-
forts to build database-driven information systems. Figure 21. Schematic representation of the AfSIS database structure 

for "eld data, soil data, and spectral libraries.
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PostgreSQL (http://www.postgresql.org) is a pow-
erful, object-relational open source database system. 
It runs stored procedures in a number of program-
ming languages, including Perl, Java, Python, Ruby, 
and Tcl, to mention some. PostgreSQL can also be 
extended with extensions and advanced features, in-
cluding GiST (Generalized Search Tree) indexing, 
which is the foundation for PostGIS. PostGIS is a 
spatial extension that adds support for geographic 
information systems (GIS).
In addition we store some of our spatial databases in 
SQLite, which is completely self-contained, server-
less, zero-con"guration, and transactional. It reads 
and writes to ordinary disk "les, and therefore en-

ables us to share databases, including spatial (GIS) 
databases across project locations in a simple way.

Satellite data
!e AfSIS project has developed operational 
schemes for semi-automatic geo-matching and 
absolute radiometric calibration of Landsat and 
MODIS satellite image data, in collaboration with 
other scientists from the World Agroforestry Centre 
(ICRAF) in Nairobi, Kenya. 
!e raw and processed image archives are stored on 
a disk array, with o# site tape backups. A hierar-
chical folder structure similar to that employed by 

Figure 22. Overview of Landsat derived products held in the AfSIS image archives at the World Agroforestry Centre.
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Landsat.org is used, as summarized in Figure 22.
!e AfSIS remote sensing database holds data on 
indicators of land health derived from Landsat 
satellite imagery.  !ese indicators can potentially 
be used for monitoring soil health across landscapes. 
!e database also holds ground re$ectance data for 
AfSIS sampling plots to be used in conjunction 
with spectral libraries and soil data for the develop-
ment of prediction models and maps of soil health.  
Some of the particular objectives include;

-
ing Landsat raw image Digital Number (DN) data 
into metric indexes of absolute ground re$ectance,

biophysical ground conditions,
compounded indicators for 

land health surveillance,

is accurate, internally consistent, relying solely on 
remote sensed imagery to produce indexes in a 
timely fashion.

AfSIS !eld database
!e data collected in "eld during sentinel site 
surveys are stored in two tables - one containing 
the site baselines (158 "elds) and another for the 
soil in"ltration tests (13 "elds). !e structure of this 
database is shown in Figure 23.
An AfSIS unique plot ID "eld (primary key) is 
automatically generated using a combination of 
country code, letters (4) in the site name, cluster and 
plot (e.g. TZ.Chin.1.1). A function was written for 
the 4-letter site code to avoid duplication, starting 
by using the "rst four letters in the site name, then 
using combinations of other letters in the name if 
the "rst letters are taken.

Figure 23. !e AfSIS sentinel site "eld database structure, showing 
the the main variables stored.
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4.2 Building and maintaining 
spectral libraries  
In AfSIS, a system for development and use of 
spectral libraries is used, as proposed by Shepherd 
and Walsh (2002) (Fig. 4) and later implemented as 
part of the Land Degradation Surveillance (LDSF) 
methodology used in AfSIS. 
At the heart of this approach is the development of 
spectral library databases for NIR and MIR spectral 
data, respectively, as illustrated in Figure 24. 
!e approach involves a classic two-phase or double 
sampling strategy as follows;

Sampling the Independent (Spectral) Phase: 
!e variability of soils in a given  study area 
is initially sampled thoroughly and character-
ized using IR spectroscopy. In the absence of 
additional information from soil maps, digital 
terrain models and/or remote sensing data, spa-
tially stratified random sampling using spatial 
continuity functions is generally an e%cient 
approach (Webster and Burgess, 1984).
Sampling the Dependent Phase:  
Once the spectral variation of a target popula-
tion has been thoroughly sampled, the more 
time consuming and/or expensive soil proper-
ties are measured on a subset of soils. Depend-
ing on the specific application, a variety of 
sub-sampling schemes may be used, ranging 
from equal probability to stratified- or design-
based random sampling approaches. 

Selection of calibration samples can also be done 
based on spectral diversity, as proposed by Shephed 
and Walsh (2002). Selection based on "rst derivative 
transformed spectra or baseline corrected spectra 
is often optimal to reduce the in$uence of albedo 
e#ects. 

AfSIS laboratory database
A relational database using FileMaker Pro (File-
Maker, Inc.) is used for storing soil data. A data 
table holding details of the samples in the AfSIS 
soil database acts as a “node table” linking the 
various soil data tables (wet chemistry, carbon and 
nitrogen, cumulative mass, and IR spectral data) 
through a Sample Serial Number (SSN). !e AfSIS 
plot ID is also stored in the sample details table 
and allows us to readily link these databases to the 
AfSIS "eld database, etc. (Figure 21). !is relational 
database setup is illustrated in Figure 24.

Soil reference data
!e database schema for the soil reference database 
(AfSIS_soils) contains the following tables;

table_SampleDetails
table_SoilWetChem
table_SoilCN
table_TXRF
table_SoilCumMass

Figure 24. Illustration of the relational AfSIS soil database.
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the principal component scores (e.g. Viscarra et al. 
2008). Where an individual soil property is of inter-
est and an existing calibration is available, predicted 
values of the property can also be used as a basis 
for selecting samples. Yet another approach uses 
weighting on bands known to provide information 
on properties of interest. 
Shepherd and Walsh (2002) found that predictive 
performance of calibration models was improved 
when some randomly selected samples were in-
cluded in the calibration, compared with systematic 
selection from the spectral data space alone. !is 
improvement was hypothesized to be due to bet-
ter sampling of the variation in the relationship 

!ere are several alternative ways of making the 
spectral selection. Most of them are based on use 
of principal component scores. Kennard and Stone 
(1969) proposed a sequential method that should 
cover the experimental region uniformly for use in 
experimental design. !e procedure consists of se-
lecting as the next sample (candidate object) the one 
that is most distant from already selected objects 
(calibration objects). 
Terhoeven-Urselmans et al. (2009) used this ap-
proach while guarding against selection of samples 
from the same soil pro"le in calibration and valida-
tion sets. Other alternatives include use of cluster-
ing (Naes et al. 2002) or systematic sampling of 

Figure 25. Logical scheme for use of re#ectance spectral libraries in a risk-based approach to prediction of soil functional attributes. Source: 
Shepherd & Walsh (2002).
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between soil properties and spectra. Hence sample 
selection based on a combination of geographic 
strati"cation and spectral diversity may be an 
optimal practice, as variation in soil forming factors 
such as climate, parent material and topography are 
sampled. 
!is approach can also be applied to the criterion 
for selecting new samples to add to a spectral library 
(Figure 25): selected samples from new geographic 
areas, not previously sampled (or from new strata 
based on geographic variables) are added to the cali-
bration library even if the spectra are not detected as 
outliers with respect to the calibration library. 
!is procedure also permits inclusion of geographic 
variables as covariates or as to stratify the spectral 
calibrations, an approach that has considerable 
potential to improve prediction performance.
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5 Data Processing and Interpretation

5.1 Data mining
Data mining is de"ned as the process of extracting 
patterns from data. Bayes’ theorem and regression 
analysis represent early methods of identifying 
patterns in data (1700s and 1800s, respectively). 
It is therefore not a new technology, although the 
terminology is relatively recent.
In more recent decades there has been a proli"c 
development of new methods for data mining as 
computer technology has evolved, including for 
example;

neural networks
clustering
genetic algorithm
decision trees
support vector machines

!e four main classes of data mining tasks are; 
clustering, classi"cation, regression and association 
rule learning. 

Data
Data are facts, numbers, or text that can be pro-
cessed by a computer. Including for example (in the 
context of soils) soil organic carbon concentration, 
cation exchange capacity or pH. Meta data, or data 
about the data itself are also data. Data generally 
refer to single instances or describe individual prop-

erties. Data are also generally quite easy to collect 
or obtain, although one could argue that this is not 
always the case - such as in AfSIS.

Information
Relationships, associations and patterns in data can 
provide information.

Knowledge
Knowledge is often di%cult to "nd, and may be 
very time consuming to obtain as well. However, it 
is knowledge that allows us to make forecasts and 
predictions.

Intelligent data analysis
!ere are two categories of statistics - descriptive 
and inferential statistics. Descriptive statistics limit 
themselves to summarizing data, and in general no 
speci"c assumptions about the data are made. In 
inferential statistics on the other hand, more rigor-
ous methods are employed that are based on certain 
assumptions about the data, and hence any conclu-
sions drawn are only valid if these assumptions are 
met.
In the design of experiments we are generally 
conducting either an experimental or observational 
study. !e main di#erence lying in whether we can 
control the data generating process or not, where in 
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found in training materials and publications ema-
nating from the project.

Mixed-e"ects models
Grouped data are commonly found in many studies, 
and therefore occur in most areas of statistical appli-
cation. Grouping structures can be simple or more 
complex, such as in nested or hierarchical designs, or 
may have a longitudinal or spatial structure. When 
data is grouped it is not appropriate to assume that 
observations are independent as the data will show 
correlations within the same group. !e grouping 
structure can be modelled using random e!ects.
A mixed-e#ects model has both random and "xed 
e!ects. A simple example of such a model is a two-
way analysis of variance (ANOVA). A model with a 
single level of grouping can be expressed as;

where ß is the "xed e#ects, bi is the vector of ran-
dom e#ects, Xi and Zi are known "xed-e#ects and 
random-e#ects regressor matrices, and ¡

f�
is the error 

term.
When we have multiple grouping levels, such as in 
AfSIS, it may have the following form;

yijk = µ+ bi + bi,j + εijk, i = 1, ...,M,

bi ℵ(0,σ2
1), b|i, j ℵ(0,σ2

2), ε ℵ(0,σ2),

where the site random e#ects bi are assumed to be 
independent for di#erent i, and the cluster within 
site random e#ects bi,j are assumed to be inde-
pendent of the bi. !e within group errors ¡

f g
�are 

assumed to be independent for di#erent i, j, and k 
and to be independent of the random e#ects. See 
for example Pinheiro and Bates (2000) for a more 
thorough treatment of mixed-e#ects models, also 
including examples.

observational studies we have no control of this.
No matter what sort of study we are undertaking, 
intelligent data analysis may help us "nd answers 
to questions that arise by providing a set of steps 
or phases in the data analysis process. !e initial 
phase in the process is project understanding - the 
main objective of the project being the primary 
thing to assess. In this phase, potential bene"ts, 
constraints, assumptions and risks should also be as-
sessed critically. !e next step in the process is data 
understanding, where the main objective is to gain 
general insights into the data that will hopefully be 
helpful in the next steps of the data analysis process.    
!is will include understanding the attributes of the 
data being analyzed and assessing data quality. For 
these steps in the process it’s important to “plot and 
look” and the data at hand using a range of visual-
ization techniques.
Once we understand our data, including carefully 
checking whether they meet our assumptions, we 
can start looking at preparing the data for subse-
quent modeling.

5.2 Data modeling in AfSIS
!e "rst step in the data modeling stage is to select 
the model class we want to use. In AfSIS we use 
several classes of models for the various types of 
data that we collect. !e most important model 
classes applied are;

Mixed-e#ects models
Finite mixture models
Multivariate calibration
Classi"cation

In the next sections we provide a rationale for the 
use of these model classes in AfSIS, and introduce 
them in more detail. Actual applications can be 

yi = Xiβ + Zibi + εi, i = 1, ...,M,

bi ℵ(0,Ψ), εi ℵ(0,σ2I),
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unit. !is are particularly useful in survey and sur-
veillance studies where a proportion of subjects may 
deviate from the average (spatial and/or temporal) 
trend. 
Finally, when combined with spatially contiguous 
data such as satellite images, digital terrain models 
and/or GIS data layers, mixed models can also be 
used for mapping.

Multivariate calibration
An important aspect of the LDSF and hence AfSIS  
is the extensive use of infrared (IR) spectroscopy 
in characterization of soil physicochemical proper-
ties, and the derivation of various indicators of soil 
condition or quality from IR spectral data (Vagen et 
al., 2006). 
!e use of traditional soil physicochemical analy-
sis methods are costly and therefore limit e#ective 
sampling densities across landscapes. !e use of 
IR spectroscopy allows us to characterize entire 
landscapes since it is both a cost-e#ective and rapid 
methodology, where the electromagnetic energy of 
molecular vibration is measured in a soil (or plant) 
sample. 

Calibration
Sampling of the dependent phase is followed by a 
calibration step which describes the relationship be-
tween the reference property (y) and the multivari-
ate spectral signal (xk), for example in linear form; 
y = b0 +

K∑

k=1

bkxk + f

where b0  and b are regression coe%cients, k is the 
number of x-variables, and f is the y-residual.
!e most commonly used calibration methods 
include multiple linear regression (MLR), princi-

Hierarchical models are increasingly applied for 
analyzing natural resource data, and are particularly 
useful as soon as there is information about covari-
ates at di#erent levels of organization or scale. 
For example, in studying the e#ects of soil manage-
ment we may have information about individual 
soil pro"les (e.g., changes in carbon content with 
depth), "eld-level information (management history, 
vegetation cover), and also information about land-
scape setting (climate, parent material, topography). 
Another situation in which multilevel modeling 
arises naturally is in the analysis of data obtained by 
strati"ed or cluster sampling. 
For example, in AfSIS 0.1 ha plots are nested within 
100 ha clusters and 10,000 ha sites. Additionally, 
there may be repeated observations nested within 
sampling units, a situation that would arise when 
plots are monitored over time. With clustered (or 
longitudinal) sampling, multilevel modeling is in 
fact necessary in order to generalize model results to 
unsampled clusters in a population of sites. 
!e main reason that this is important in practice, is 
that model-based predictions that ignore di#erences 
in the spatial and/or temporal con"guration of sam-
ples may be misleading. Estimates of the variability 
between sites and/or points in time, which are typi-
cally of central interest in management applications, 
would almost certainly be wrong. 
!ere are additional features that make multilevel 
models useful in natural resource management ap-
plications. For one, sampling units do not have to be 
measured over the same number of points in time 
(and/or space), and thus units with incomplete data 
can be included in the analysis. !is is an important 
advantage over classical methods that generally 
require complete data coverage.
Whereas classical approaches estimate only the av-
erage (or "xed) e#ects in a population, mixed-e#ects 
models can also be used to predict each sampling 
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matches the intended model use. Model valida-
tion in this context simply means checking  how 
well the model will perform in predicting new data. 
!e simplest measure  of the uncertainty on future 
predictions is the root mean square error of predic-
tion (RMSEP). !is value expresses the average 
uncertainty that can be expected when predicting 
the response-values for new samples (see Naes et 
al., 2002). RMSEP is valid, provided that the new 
samples represent an independent sample of the 
population under consideration; otherwise, the 
actual prediction errors might be much higher. 
In this case, the term “independent” refers to the 
notion that knowing something about the valida-
tion samples would not be helpful in predicting 

pal components regression (PCR) and partial least 
squares regression (PLS) (Martens and Martens, 
2001; Naes et al., 2002). 
PLS and PCR are similar in that both employ 
orthogonal linear combinations of wavelengths to 
overcome the problem of high-dimensional, cor-
related  predictors (multicollinearity) (Martens and 
Naes, 1989). PLS, the most widely used calibration 
method in infrared spectroscopy, orientates the 
components to the y variable.
Guidelines on treatment of calibration outliers are 
given by Naes et al. (2002). Only in$uential outliers 
are normally of concern, i.e. those with large lever-
age (distance in x-space) and large y-residuals.
Both PCR and PLS are now available in most 
standard statistical packages (e.g. Genstat, S-Plus, 
SAS, R) as well as in more specialized “chemomet-
ric” software packages, such as !e Unscrambler® 
(Camo Inc), Matlab (!e MathworksTM), PLS-
Toolbox (Eigenvector Research Inc), and ParLes 
(Viscarra Rossel, 2008). Additionally, non-linear 
regression methods (e.g. generalized additive models 
and regression splines, local PLS), and non-para-
metric classi"cation and regression methods (e.g. 
classi"cation and regression trees, neural networks, 
support vector machines, genetic algorithms) have 
also been successfully used in past soil reflectance 
studies.
Scripts, functions and libraries for R-statistics 
(http://www.r-project.org/) are under continuous 
development and several spectral processing and 
regression tools are available in the R package “soil.
spec” (http://cran.at.r-project.org/).

Validation
Regardless of the specific technique employed, 
the most important aspect in developing robust 
predictive models is to ensure that model validation 

Figure 26. Logical scheme for use of re#ectance spectral libraries in a 
risk-based approach to prediction of soil functional attributes. Source: 
Shepherd & Walsh (2002).
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Data pre-treatment
Various signal processing or spectral data pretreat-
ment, such as smoothing and "ltering, transforma-
tion, standardization, and numerical treatment are 
used to improve signal-to-noise-ratio, correct for 
light scattering, convert data into more physically 
meaningful form, and extract meaningful or useful 
information before calibration. 
First derivative processing and smoothing have 
been found to be generally optimal for calibration 
of many soil properties. Wavelet transforms have 
shown promise as a way to simultaneously opti-
mize soil spectral information, reduce data volume 
and solve multicollinearity problems (e.g. Ge et 
al., 2007; Viscarra and Lark, 2009). Continuum 
removal (Clark and Roush, 1984) is useful for maxi-
mizing information on absorption features and may 
be worth further study. 

the response-values of the calibration samples. Soil 
samples taken in close proximity to one another 
or at di#erent depths in the same soil pro"le are 
typically not independent of one another and their 
inclusion in both calibration and validation sets can 
lead to over-optimistic validation performance. 
Other metrics for evaluating prediction perfor-
mance commonly used include the ratio of predic-
tion to standard deviation (RPD) and the ratio 
error range (RER). !ese are calculated as (a) the 
standard deviation of the reference measurements in 
the validation set, or (b) the range of the reference 
measurements in the validation set, divided by the 
standard error of prediction, respectively. Guidelines 
on interpretation are given my Malley et al. (2004). 
Standards for multivariate calibration are given in 
Standard Practices for Infrared Multivariate Quan-
titative Analysis (ASTM E1655-05) and Standard 
Practice for Validation of Empiricially Derived 
Multivariate Calibrations (ASTM E2617-08a).
Cross-validation is commonly used to evaluate cali-
bration model performance and prevent over-"tting, 
however, cross-validation does not substitute for use 
of independent validation sets in evaluating model 
performance. Statistical re-sampling or ensemble 
techniques such as bootstrap aggregation (or bag-
ging) have also been employed to improve prevent 
over-"tting, stabilize models and improve prediction 
accuracy (e.g. Vicarra Rossel, 1997; Brown et al., 
2006).
Soil classi"cation problems, where the y-variable 
is discrete rather than continuous can be calibrated 
using modi"cations of many of the same calibra-
tion methods, for example using discriminant PLS 
or classi"cation trees. Examples of soil diagnostic 
screening tests are given by Shepherd and Walsh 
(2002). Unsupervised classi"cation of spectra have 
also been used to produce spectral classes, which 
are then interpreted in terms of soil properties (e.g. 
Vagen et al., 2006).

Figure 27. Example showing prediction of soil organic carbon 
(SOC) from NIR spectral data using a multilevel PCR model.
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Finite mixture models
Finite mixture models are applied in a wide range 
of areas for modeling unobserved heterogeneity or 
for approximating general distribution functions 
(McLachlan and Peel, 2000). 
In AfSIS we use "nite mixture models in model-
based clustering (see example in Figure 28). !e use 
of such probability models, rather than heuristic 
procedures, for clustering is becoming more and 
more common for image segmentation and in a 
number of other applications, including the analysis 
of IR spectral data. 
We use model based clustering methods in analysis 
of IR spectra to estimate a model for the data that 
allows for overlapping clusters, as well as a proba-

Transformation of the y-variable is usually also nec-
essary to obtain normally distributed data in order 
to satisfy the assumptions of parametric methods 
and to help minimize non-linearity in calibrations. 
Soil element concentrations are typically highly 
skewed due to a low frequency of large values. Per-
formance statistics are calculated on the back-trans-
formed values. Prediction errors can be calculated 
for windows across the range of the reference values, 
and the probability of predicted values being above 
or below critical limits can also be calculated.

Classi!cation
Classi"cation problems arise in cases where the 
aim is to assign each input vector to one of a "nite 
number of discrete categories. In cases where we 
are interested in modeling dependency towards 
one particular attribute, or where we have access to 
a value for the target attribute, the latter is often 
referred to as supervised learning.
We apply various classi"cation methods in AfSIS;

Decision Trees - involve a hierarchical way to 
partition the input space to explain how dif-
ferent areas of the input space correspond to 
di#erent outcomes.
Bayes classi!ers - use simple probabilities to 
express their model.
Regression models - form the counterpart to 
numerical approximation problems. Unlike 
other approaches where the aim is to "nd a 
classi"er and minimize the classi"cation error, 
the approach in regression models is to mini-
mize the approximation error.
Rule models - these are generally not the "rst 
choice for classi"cation since not many usable 
algorithms exist for complex data.

Figure 28. Example of the use of "nite mixture models for the 
development of soil condition classes in Segou region, Mali (Vagen et 
al, in print).
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In general, indicators simplify complex phenomena. 
However, they do not reduce complexity. Environ-
mental indicators are developed around the concepts 
of drivers, pressures, state, impact, and responses 
(the DPSIR model).
In satellite remote sensing single band re$ectance is 
a metric index, but carries limited meaning (at least 
for the non-expert). A normalized vegetation index 
is dimensionless, but nevertheless a better indicator 
of vegetation density compared to single bands. 
To qualify as an indicator the following criteria 
should be considered (Rice 2003):

Meaning
Ability to measure
Accuracy/precision
Representativeness
Availability of historic records
Speci"city
Ability to be used as reference
Sensitivity
Responsiveness
!eoretical basis

bilistic clustering that quanti"es the uncertainty 
of observations belonging to components of the 
spectral mixture.

5.3 Remote sensing
In recent years time series of moderate resolution 
satellite imagery such as Landsat have become avail-
able free of charge. !is has allowed for operational 
monitoring of forest changes using Landsat data.
Many indicators of environmental health (ecosys-
tem status) can be derived from remote sensing, 
either alone or in combination with ancillary data. 
For large, data poor regions, remote sensing presents 
the best option for monitoring and surveying eco-
system status. 
An index is any remote sensing derived parameter 
that is unambiguously de"ned, preferably on a 
metric basis. An index can also be an indicator, if 
it is corroborated as carrying relevant and desired 
information. An indicator, however is more likely to 
be de"ned as a compound of two or more indices, 
or from a combination of indices and ancillary data. 
Indicators should be intelligible, and preferably 
de"ned in metric units, but they can be non-metric. 

Index Type Algorithm Biophical interpretation
Simple ratio 
(SR)

Band ratio VIS/NIR or
SWIR/NIR

Vegetation index

NDVI Band normalization (NIR-VIS)/(NIR+VIS) Vegetation index
SAVI Band normalization 

with corrections
(NIR-VIS)*(1+L)/(NIR_VIS+L) Vegetation index

EVI Band normalization 
with corrections

(NIR-VIS)/
(NIR+C1*VIS+C2*BLUE+L)

Vegetation index

NDSI Band normalization (VIS-SWIR)/(VIS+SWIR) Snow and ice indexing
NDWI Band normalization (NIR-SWIR)/(NIR+SWIR) Water and burnt area indexing

Table 3. Pixel-based indices derived from ratios and normalizations of 2 image bands.
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Figure 29. Satellite image (Landsat and MODIS) processing pipeline used in AfSIS.
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the image sensor data to create data sets that allow 
us to derive models at continental scales where we 
are combining data from thousands of Landsat 
scenes for example. 

Vegetation cover
Vegetation cover is essential for the functioning of 
local ecosystems, for land health and for the water 
cycle, and at the global scale it also a#ects the 
carbon cycle and climate. To date, regional to global 
vegetation change detection has relied on coarse 
scale imagery, with early attempts focusing on the 
National Oceanic and Atmospheric Administration 
(NOAA) operated Advanced Very High Resolution 
Radiometer (AVHRR) series of sensors (Malin-

Traditionally, remote sensing analysis often centers 
on deriving various indices (e.g. NDVI), spectral 
unmixing techniques, and classi"cation. !e ap-
proach taken in AfSIS, which builds on studies 
conducted using the LDSF methodology during the 
last 5 years, is somewhat di#erent from conventional 
remote sensing analysis in that we take more of a 
statistical approach. 
We take various indices developed along with raw 
data (e.g. ground re$ectance) and combine these 
with our sentinel site ground data in order to 
develop models that allow us to predict for example 
tree density across landscapes, and various soil 
related properties.
For this type of approach to be successful, however, 
the processing of the imagery used to develop the 
covariate database is critical. A lot of emphasis has 
therefore been on pre-processing and processing of 

Figure 31. Perpendicular Vegetation Index (PVI) image from the 
Rift Valley in Kenya. Lake Nakuru is in the center of the image. 
Dark brown is bare; Dark green is dense vegetation.

Figure 30. Watershed map of Africa derived from the "lled SRTM 
DEM.
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1. continental to river basin,
2. hillslope (watershed),
3. patch (or stand), and
4. ecotope (single tree)
!e continental scale is simply delineated from 
global datasets of coast lines, from a hydrologically 
adjusted ("lled) version of the Shuttle Radar Topog-
raphy Mission (SRTM) data (available for down-
load here; http://africasoils.net/data/rsdownload), 
and the major river basins of Africa delineated from 
the "lled SRTM DEM above (Figure 30). 
!e watershed map can be used for segmentation of 
AVHRR and MODIS derived indices and indica-
tors to river basins. Re"nements are needed for 
some regions.
Patches are de"ned as uniform ecological stands, 
and can be delineated from e.g. vegetation maps. 
!e processing chain presented in Figure 29 
automatically generates patches of forests, non 
photosynthetic vegetation, bare soil and water from 
Landsat (28.5 to 57 m resolution) and MODIS 
(500 m resolution) multispectral data.

Data processing
Processing of multi-date satellite imagery is highly 
demanding and comprises several steps, including;
1. calibration to radiance or re$ectance
2. atmospheric correction
3. image geo-matching
4. terrain correction
5. masking of clouds and cloud shadows and other 

unwanted features. 
A data preprocessing chain for geometric and radio-
metric calibration of Landsat data, and a processing 

greau and C.J. Tucker, 1988; Myneni et al. ,1997). 
More recently, Moderate Resolution Imaging Spec-
troradiometer (MODIS) data (Hayes et al. 2008) 
have been increasingly employed. !e "nest-scale 
global data set is the global Continuous Vegeta-
tion Fields (VCF) datasets from MODIS at 500 m 
spatial resolution (Hansen et al. 2003). 
Reliable data at higher resolution are urgently 
needed both for a better scienti"c understanding 
of the relations between vegetation cover and soil, 
water and climatic conditions at di#erent scales, for 
relating local socioeconomic conditions and land 
health, and for sustainable land management. 
Potential users of such data also include the UN 
Convention to Combat Deserti"cation (UNCCD), 
the Convention on Biological Diversity (CBD) and 
the Ramsar Wetland Convention, as well as the In-
tergovernmental Panel on Climate Change (IPCC).
Creating an operational framework by adopting 
Landsat data for automated mapping is urgent in 
Africa, where land cover change and deforestation is 
caused largely by shifting agriculture, and is there-
fore highly fragmented. 
!e need for more high-resolution data is also 
evident in the well known discrepancy between 
estimates of deforestation derived from ground data, 
and those derived from past coarse-scale satellite 
image surveys. Also, the changes captured by coarse 
resolution imagery is generally not relevant to the 
scale at which land management is taking place, 
hence one will not be able to pick up properties 
sensitive to management.

Hierarchical analysis
In AfSIS we use a spatiotemporal hierarchical scale 
for land health monitoring, ranging from coarse to 
"ne resolution as follows;



 SOIL HEALTH SURVEILLANCE | 65

chain for index generation that can use both MO-
DIS and Landsat data as input has been developed 
and is being applied in AfSIS (Figure 29).
Once corrected and calibrated, the data can be used 
for calculating relevant indices that can be com-
pared over time. 

Pre-processing
Data from MODIS, AVHRR and other wide swath 
image sensors need special attention for radiometric 
correction due to view angle variations and vary-
ing atmospheric depth. !e MODIS and AVHRR 
products are already corrected using a bidirectional 
re$ectance distribution function (BRDF), and are 
hence free from view angle e#ects and with cloud 
and aerosol contamination encoded. Landsat data 
and other higher resolution data have negligible er-
rors stemming from view angle e#ects.
In AfSIS, we apply a semi-automated procedure for 
georeferencing Landsat data using a ground control 
point-matching script. For each WRS position the 
Global Land Survey (GLS) 2000 Landsat ETM 
data set is used as a template for both projection, 
resolution and georeference. 
!e MODIS data is resampled and reprojected 
using the MODIS Reprojection Tool (MRT), with 
the native georeferencing accuracy accepted. 
Relative radiometric calibration can be done from a 
(full) scene based on simple regression (SR) normal-
ization, or based on pseudo-invariant-features (PIF). 
Absolute radiometric calibration either uses ancil-
lary data or derives the atmospheric corrections 
from the scene properties itself. 
Relative calibrations are in general easier to apply, 
and reported to perform equally well as the absolute 
algorithm. Identifying pseudo invariant features 
is the major obstacle in PIF normalization. Truly 

invariant targets can only be identi"ed in hyper-arid 
regions, although dense forests are also frequently 
used as pseudo-invariant-features.
In order to make satellite derived re$ectance metrics 
directly comparable with "eld and laboratory de-
rived re$ectance data, absolute calibration methods 
are called for.

Processing of calibrated and georeferenced Landsat 
and MODIS re$ectance data
After georeferencing and radiometric calibration 
the Landsat and MODIS re$ectance data enter the 
processing chain (Figure 29) using the same algo-
rithms, only di#ering in the parameterization on the 
tasseled cap components.

Pixel-based indices
!ese are simple indices often based on band ratios 
and normalizations (Table 3). In AfSIS we derive 
several pixel-based indices as part of automated 
image processing pipelines and later explore these 
as covariates in relation to ground data from the 
sentinel site surveys (see section 5.1).
An alternative set of indices is also derived to 
explore the spectral domain more fully. With these 
indices and optimal soil line is identi"ed prior to 
normalization, and they can therefore be calibrated 
to have better physical correlation with vegetation 
density. Both these indices are calculated as part of 
the image calibration pipeline applied in AfSIS, and 
stored with the surface re$ectance (SRFI) rasters.
!ese so-called n-space indices include;

the Perpendicular Vegetation Index (PVI)
the Perpendicular Brightness Index (PBI)
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Object oriented analysis
!e patch is de"ned as a piece of the landscape that 
is considered homogeneous at the scale of a particu-
lar study, and is the basic unit in landscape ecology. 
A landscape is comprised of a mosaic of di#erent 
types of patches.
In AfSIS we apply the FRAGSTATS program 
(Figure 29) to calculate a number of statistics for 
patches in landscapes, and for the landscape as 
a whole. FRAGSTATS is concerned with both 
landscape composition and landscape con"guration. 
Landscape composition addresses the variety and 
abundance of patches within the landscape, while 
landscape con"guration is concerned with physical 
distribution and spatial character of patches.

Challenges and constraints
!e low repeat cycle of moderate to high resolu-
tion imagery, combined with persistent cloud cover, 
sensor drift, atmospheric disturbances, sensor 
malfunction (e.g. SLC o# of the Landsat ETM+ 
sensor as of May 2003) present some challenges and 
limitations for their application in change detection 
studies. Another constraint is data quality, particu-
larly when there are sensor malfunctions. 
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